Value |
1
%
|
Organism |
Bacteria Escherichia coli |
Reference |
Szenk M, Dill KA, de Graff AMR. Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis. Cell Syst. 2017 Aug 235(2):95-104. doi: 10.1016/j.cels.2017.06.005 p.96 right column bottom paragraphPubMed ID28755958
|
Primary Source |
Jeckelmann JM et la., Structure and function of the glucose PTS transporter from Escherichia coli. J Struct Biol. 2011 Dec176(3):395-403. doi: 10.1016/j.jsb.2011.09.012 AND Vemuri GN et al., Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol. 2006 May72(5):3653-61 DOI: 10.1128/AEM.72.5.3653-3661.2006 AND O'Brien EJ et al., Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol. 2013 Oct 1 9 :693. doi: 10.1038/msb.2013.52PubMed ID21996078, 16672514, 24084808
|
Comments |
P.96 right column bottom paragraph: "The second step of glucose uptake is through inner membrane transporters. [Investigators] estimate that glucose transporters occupy only 1% of the membrane area when overflow metabolism begins, and thus make a much smaller contribution to inner membrane crowding than the electron transport chain (Figure 2A and Box 1). This number is obtained using the area of a glucose transporter dimer (48 ± 10 nm^2) (primary source Jeckelmann et al., 2011), its maximum uptake rate (kT = 180 ± 40 glucose/s), the surface-to-volume ratio of a cell (Figure 1A), and the cell's total glucose uptake rate (primary sources Vemuri et al., 2006, O’Brien et al., 2013) (Table S1A)." PTS=phosphotransferase system |
Entered by |
Uri M |
ID |
115087 |