Range |
Table - link mM
|
Organism |
Budding yeast Saccharomyces cerevisiae |
Reference |
Baudouin-Cornu P, Lagniel G, Kumar C, Huang ME, Labarre J. Glutathione degradation is a key determinant of glutathione homeostasis. J Biol Chem. 2012 Feb 10 287(7):4552-61. doi: 10.1074/jbc.M111.315705 p.4557 table 2PubMed ID22170048
|
Method |
Abstract: "Combining mathematical models and (35)S labeling, [investigators] analyzed Saccharomyces cerevisiae sulfur metabolism. This led [them] to the observation that GSH [glutathione] recycling is markedly faster than previously estimated. [They] set up additional in vivo assays and concluded that under standard conditions, GSH half-life is around 90 min." |
Comments |
P.4557 left column 2nd paragraph: "To complete this study, [investigators] measured GSH intracellular concentration in W303-1A cells grown in nitrogen-free medium and observed that this concentration is significantly increased (Table 2). This result is consistent with a recent study in Schizosaccharomyces pombe (ref 27) but contrasts with other data in Saccharomyces cerevisiae (ref 9)." P.4558 right column 2nd paragraph: "[Investigators] measured GSH concentration in WT, dug2Δ, and dug3Δ strains and found that under standard conditions, the amount of intracellular GSH in the degradation mutants is approximately twice that in the WT strain (Table 2). Interestingly, this is the concentration [they] find in [their] mathematical model by simply suppressing GSH degradation (flux p = 0, Fig. 2) and adapting GSH concentration to satisfy the steady state hypothesis." |
Entered by |
Uri M |
ID |
113869 |