Definition of one microStern (µS), a unit to measure mitotic crossovers

Value 1E-06 crossovers/division
Organism Budding yeast Saccharomyces cerevisiae
Reference Rosen DM, Younkin EM, Miller SD, Casper AM. Fragile site instability in Saccharomyces cerevisiae causes loss of heterozygosity by mitotic crossovers and break-induced replication. PLoS Genet. 2013 9(9):e1003817. doi: 10.1371/journal.pgen.1003817 p.8 right column 4th paragraphPubMed ID24068975
Primary Source [28] St Charles J, Petes TD. High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV. PLoS Genet. 2013 Apr9(4):e1003434. doi: 10.1371/journal.pgen.1003434PubMed ID23593029
Method Primary source abstract: "[Investigators] mapped about 140 spontaneous reciprocal crossovers on the right arm of the yeast chromosome IV using single-nucleotide-polymorphism (SNP) microarrays. [Their] mapping and subsequent experiments demonstrate that inverted repeats of Ty retrotransposable elements are mitotic recombination hotspots."
Comments P.8 right column 4th paragraph: "St Charles and Petes [primary source] defined the microStern (µS) as a unit to measure mitotic crossovers, with 10^−6 crossovers/division equal to one microStern, and they estimated the entire yeast genome has a mitotic genetic map length of 620 µS. The portion of chromosome III [investigators] evaluated accounts for 1.3% of the physical yeast genome, therefore [they] expect a genetic map length of 8 µS."
Entered by Uri M
ID 117020