Primary Source |
11) Ertugay, N., and H. Hamamci. 1997. Continuous cultivation of baker’s yeast: change in cell composition at different dilution rates and effect of heat stress on trehalose level. Folia Microbiol. 42:463–467. (21). Ku¨enzi, M. T., and A. Fiechter. 1972. Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation. Arch. Mikrobiol. 84:254–265. (30) Nissen, T., U. Schulze, J. Nielsen, and J. Villadsen. 1997. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218. (32) O¨ stling, J., and H. Ronne. 1998. Negative control of the Mig1p repressor by Snf1-dependent phosphorylation in the absence of glucose. Eur. J. Biochem. 252:162–168. (33) Oura, E. 1972. The effect of aeration on the growth energetics and biochemical composition of baker’s yeast, with an appendix: reactions leading to the formation of yeast cell material from glucose and ethanol. Ph.D. thesis. Helsinki University, Helsinki, Finland. (41) van Gulik, W. M., and J. J. Heijnen. 1995. A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol. Bioeng. 48:681–698. (43) Verduyn, C. 1991. Physiology of yeasts in relation to biomass yields. Antonie Leeuwenhoek 60:325–353.PubMed ID9438349, 4559459, 9025295, 9523726, 18623538, 1807201
|