Value |
0.5
sec
|
Organism |
Budding yeast Saccharomyces cerevisiae |
Reference |
Calculated according to yeast cell diameter and average protein diameter. Please see Measurement Method |
Method |
Taking X, distance to be traveled, as 4.5µm (BNID 100 451) and D in cytoplasm, as 10µm^2/sec (D in cytoplasm is in the range of 5-15µm^2/sec, GFP-BNID 100 193, 40kda dextran, similar weight to protein, BNID 100198). According to equation of diffusion (in 3 dimensions): t diffusion=X^2/(6×D). (4.5µm)^2/60µm^2/sec=0.338sec˜0.5sec. |
Comments |
In cytoplasm there are solutes and D is smaller than in water (100µm^2/sec). D in water can be calculated from the Einstein-Stokes eq. D=KBT/6/p/?/R where R=2.5nm, typical protein radius. KB=Boltzmann's constant, ?=viscosity, 0.001 Pa×sec for water. (1.38×10^-23Kg×m^2×sec^-2×K^-1×300K)/ (6×3.14×0.001Kg×m^-1×sec^-1×2.5×10^-9m)=
8.8×10^-11m^2/sec=88µm^2sec˜100µm^2/sec |
Entered by |
Uri M |
ID |
104525 |