Comparison between colony doubling time and doubling time predicted from measurements of growth rate of individual cells of haploids, diploids and tetraploids

Range Table - link
Organism Budding yeast Saccharomyces cerevisiae
Reference Talia, S. D., J. M. Skotheim, J. M. Bean, E. D. Siggia, and F. R. Cross, 2007. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448:947–951. Supplementary information p. 20 table S12PubMed ID17713537
Method P.947 left column bottom paragraph: "[Researchers] measured times from cytokinesis to budding (G1) and from budding to cytokinesis in haploids, diploids or tetraploids (mothers and daughters), using time-lapse fluorescence microscopy of strains expressing Myo1 tagged with green fluorescent protein (Myo1–GFP)." P.950 left column paragraph above bottom: "Strain and plasmid constructions: Standard methods were used throughout. All strains are W303-congenic. All integrated constructs were characterized by Southern blot analysis. Cells were prepared for time-lapse microscopy as described (ref 24, Bean et al. 2006 PMID 16387649). [Researchers] observed growth of microcolonies with fluorescence time-lapse microscopy at 30°C using a Leica DMIRE2 inverted microscope with a Ludl motorized XY stage. Images were acquired every 3min for cells grown in glucose and every 6min for cells grown in glycerol/ethanol with a Hamamatsu Orca-ER camera. [They] used custom Visual Basic software integrated with ImagePro Plus to automate image acquisition and microscope control."
Comments Media and temperature dependent. Although unspecified, the growth media appears to be glucose according to following sentence from p.16 in supplementary information: "Glycerol/ethanol supports a much slower growth rate than glucose (170 min compared to 100 min doubling time)..." See BNID 101310, 104360. For 100 min in rich medium see BNID 100270
Entered by Uri M
ID 105487