Range |
Table - link min
|
Organism |
Budding yeast Saccharomyces cerevisiae |
Reference |
Oguz C et al., A stochastic model correctly predicts changes in budding yeast cell cycle dynamics upon periodic expression of CLN2. PLoS One. 2014 May 9 9(5):e96726. doi: 10.1371/journal.pone.0096726. p.4 table 2PubMed ID24816736
|
Method |
Abstract:"First, [investigators] estimate the model parameters using extensive data sets: phenotypes of 110 genetic strains, single cell statistics of wild type and cln3 strains. Optimization of stochastic model parameters is achieved by an automated algorithm [they] recently used for a deterministic cell cycle model. Next, in order to test the predictive ability of the stochastic model, [they] focus on a recent experimental study in which forced periodic expression of CLN2 cyclin (driven by MET3 promoter in cln3 background) has been used to synchronize budding yeast cell colonies." |
Comments |
P.3 right column top paragraph:"Table 1 shows that after parameter optimization (six generations of DE [differential
evolution] or 120 function evaluations), cln3 statistics are captured much better by the model (39% reduction in the fitting error), while overall fitting error in terms of wild type statistics (not enforced during optimization) remain unchanged (Table 2). [Investigators] also capture the abundances of key cell cycle proteins within threefold of experimental values [ref 15], [ref 16] as shown in Table S8 [BNID 112259]. In addition, [they] note that the stochastic simulation statistics presented in Tables 1, 2, and S8 have coefficient of variation (CV) values of less than 10% (low variability) among 15 independent realizations." See notes beneath table |
Entered by |
Uri M |
ID |
112258 |