Range |
≤50 %
|
Organism |
Plants |
Reference |
Wilson, R.H. & Whitney S.M. Improving CO2 fixation by enhancing Rubisco performance. In: Directed Enzyme Evolution: advances and applications. Alcalde, M. (ed.). Springer, Switzerland. Pp: 101-126 (2017) p.102 top paragraph |
Primary Source |
[9] Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38(9):1817–1832 doi: 10.1111/pce.12425 [68] Sharwood RE, Sonawane BV, Ghannoum O, Whitney SM (2016) Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry. J Exp Bot 67(10):3137–3148 doi: 10.1093/jxb/erw154PubMed ID25123951, 27122573
|
Comments |
P.102 top paragraph: "In plants and algae the carboxylation reaction of Rubisco occurs at a slow pace (~1–5 cycles per second) resulting in its catalytic properties often limiting the
rate of photosynthesis and growth in these organisms [primary source 9, ref 45]. To compensate for this shortcoming, many photosynthetic organisms require high amounts of Rubisco to meet their metabolic needs. For example, Rubisco can comprise up to 50% of the soluble protein in rice and wheat leaves [primary sources]. This high investment in Rubisco is therefore critical to supporting primary productivity in the global food chain which results in it being the most abundant enzyme on Earth [ref 16, BNID 103827]." |
Entered by |
Uri M |
ID |
114624 |