Range |
typical footprint 28-29: stalled at an mRNA 3′ end ~15: closely stacked diribosomes ~80 nucleotides
|
Organism |
Budding yeast Saccharomyces cerevisiae |
Reference |
Joazeiro CAP, Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. Annu Rev Cell Dev Biol. 2017 Oct 6 33: 343-368. doi: 10.1146/annurev-cellbio-111315-125249 p.355 3rd paragraphPubMed ID28715909
|
Primary Source |
Guydosh NR, Green R. 2014. Dom34 rescues ribosomes in 3′ untranslated regions. Cell 156: 950–62 doi: 10.1016/j.cell.2014.02.006PubMed ID24581494
|
Comments |
P.355 3rd paragraph: "Likely to be critical in providing a more complete picture of endogenous pauses and stalls at the transcriptome level are computational methods aimed at improving resolution (Woolstenhulme et al. 2015), experimental manipulations to increase stalling or decrease rescue (Figure 5) (primary source, Guydosh & Green 2017), and the analysis of alternative footprint sizes (primary source, Guydosh & Green 2017). Although the typical footprint size of nonrotated, elongating ribosomes is 28–29 nt, stalled ribosomes may be associated with different footprint sizes, for example, ribosomes stalled at an mRNA 3' end protect ∼15 nt, and closely stacked diribosomes can
protect ∼80 nt (primary source)." |
Entered by |
Uri M |
ID |
114272 |