Range |
<5 %
|
Organism |
Unspecified |
Reference |
Larance M, Ahmad Y, Kirkwood KJ, Ly T, Lamond AI. Global subcellular characterization of protein degradation using quantitative proteomics. Mol Cell Proteomics. 2013 Mar12(3):638-50. doi: 10.1074/mcp.M112.024547. p.638 left column bottom paragraphPubMed ID23242552
|
Primary Source |
[3] Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res. 2009 Jan8(1):104-12. doi: 10.1021/pr800641v. [4] Eden E et al., Proteome half-life dynamics in living human cells. Science. 2011 Feb 11 331(6018):764-8. doi: 10.1126/science.1199784. [5] Yen HC et al., Global protein stability profiling in mammalian cells. Science. 2008 Nov 7 322(5903):918-23. doi: 10.1126/science.1160489. [7] Boisvert FM et al., A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics. 2012 Mar11(3):M111.011429. doi: 10.1074/mcp.M111.011429.PubMed ID18954100, 21233346, 18988847, 21937730
|
Comments |
P.638 left column bottom paragraph: "Most intracellular proteins have similar degradation rates, with a half-life approximating the cell doubling rate. Under 5% of proteins display degradation rates more than threefold faster than the proteome average (refs 3–5, 7)." |
Entered by |
Uri M |
ID |
112250 |