ATPase activity and ATP/ADP-induced conformational change in the soluble domain of the bacterial protein translocator HlyB

Mol Microbiol. 1993 Jun;8(6):1163-75. doi: 10.1111/j.1365-2958.1993.tb01661.x.

Abstract

The haemolysin exporter HlyB and its homologues are central to the unconventional signal-peptide-independent secretion of toxins, proteases and nodulation proteins by bacteria. HlyB is a member of the ATP-binding cassette (ABC) or traffic ATPase superfamily, and resembles closely in structure and function mammalian exporters such as the multidrug-resistance P-glycoprotein, combining both integral membrane and cytosolic domains. Overproduction of the HlyB cytoplasmic domain as a C-terminal peptide fused to glutathione S-transferase allowed the direct affinity purification and concentration of 30-50 mg ml-1 of soluble protein (GST-Bctp) in an apparently dimeric form possessing both transferase and ATPase activity. GST-Bctp bound to ADP-agarose and was eluted specifically by ATP and ADP, affinity behaviour which was confirmed in both the full-length HlyB and the unfused HlyB cytoplasmic domain synthesized in vitro. The stoichiometry of binding to MgATP and MgADP was close to equimolar and both ligands induced substantial conformational change in the protein. Mg(2+)-dependent ATPase activity of GST-Bctp (Vmax 1 mumol min-1 mg-1, Km 0.2 mM) was comparable with the activity of the bacterial importer MalK and human P-glycoprotein reconstituted into proteoliposomes, and over an order of magnitude higher than in vitro measurements of disaggregated MalK purified from inclusion bodies. Activity was unaffected by inhibitors of F- and V-type ATPases, non-hydrolysable ATP analogues, or translocation substrate, but was severely inhibited by inhibitors of E1E2 (P-type) ATPases, and the acidic phospholipid phosphatidyl glycerol.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Diphosphate / pharmacology*
  • Adenosine Triphosphatases / chemistry
  • Adenosine Triphosphatases / genetics
  • Adenosine Triphosphatases / metabolism*
  • Adenosine Triphosphate / analogs & derivatives
  • Adenosine Triphosphate / metabolism
  • Adenosine Triphosphate / pharmacology*
  • Allosteric Regulation
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Carrier Proteins / chemistry
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism*
  • Escherichia coli / metabolism
  • Glutathione Transferase / genetics
  • Hemolysin Proteins
  • Multigene Family
  • Protein Conformation*
  • Recombinant Fusion Proteins / metabolism

Substances

  • Bacterial Proteins
  • Carrier Proteins
  • Hemolysin Proteins
  • Hlyb protein, Bacteria
  • Recombinant Fusion Proteins
  • 2',3'-O-(2,4,6-trinitro-cyclohexadienylidine)adenosine 5'-triphosphate
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Glutathione Transferase
  • Adenosine Triphosphatases