Elongation and surface extension of individual cells of Escherichia coli B/r: comparison of theoretical and experimental size distributions

J Theor Biol. 1987 Dec 7;129(3):337-48. doi: 10.1016/s0022-5193(87)80006-1.

Abstract

The way individual cells grow and divide uniquely determines the (time-invariant) cell size distribution of populations in steady-state exponential growth. In the preceding article, theoretical distributions were derived for two exponential and six linear models containing a small number of adjustable parameters but no assumptions other than that all cells obey the same growth law. The linear models differ from each other with respect to the timing of the presumptive doubling in their growth rate, the exponential models--according to whether there is or is not a part of the cell that does not contribute to the growth rate. Here we compared the size distributions predicted by each of these models with those of cell length and surface area measured by electron microscopy; the quality of the fit, as determined by the mean-square successive-differences test and the chi 2 goodness-of-fit test, was taken as a measure of the adequacy of the model. The actual data came from two slow-growing E. coli B/r cultures, an A strain (pi = 125 min) and a K strain (pi = 106 min), and a correction was introduced in each to account for the distortion caused by the finite size of the picture frame. The parameter estimates produced by the various models are quite reliable (cv less than 0.1%); we discuss them briefly and compare their values in the two strains. All the length extension models were rejected outright whereas most of the surface growth versions were not. When the same models were tested on A-strain data from a faster growing culture (tau = 21 min), those models that provided an adequate fit to the cell surface area data proved equally satisfactory in the case of cell length. These findings are evaluated and shown to be consistent with cell surface area rather than cell length being the dimension under active control. Three surface area models, all linear, are rejected--those in which doubling of the growth rate occurs with a constant probability from cell birth, at a particular cell age, and precisely at cell division. The evidence in the literature that appears to contradict this last result, rejection of the simple linear surface growth model, is shown to be faulty. The 16 original models are here reduced to five, two involving exponential surface growth and three linear, and possible reasons are presented for our inability to discriminate further at this stage.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Division
  • Escherichia coli / cytology
  • Escherichia coli / growth & development*
  • Models, Biological
  • Statistics as Topic