Microinjection of ubiquitin: intracellular distribution and metabolism in HeLa cells maintained under normal physiological conditions

J Cell Biol. 1987 Mar;104(3):537-46. doi: 10.1083/jcb.104.3.537.

Abstract

Radioiodinated ubiquitin was introduced into HeLa cells by erythrocyte-mediated microinjection. Subsequent electrophoretic analyses revealed that the injected ubiquitin molecules were rapidly conjugated to HeLa proteins. At equilibrium, 10% of the injected ubiquitin was conjugated to histones and 40% was distributed among conjugates of higher molecular weight. Although the remaining ubiquitin molecules appeared to be unconjugated, the free pool of ubiquitin decreased by one-third and additional conjugates were present when electrophoresis was performed at low temperature under nonreducing conditions. Molecular weights of these labile conjugates suggest that they are ubiquitin adducts in thiolester linkage to activating enzymes. Despite the fairly rapid degradation of injected ubiquitin (t1/2 approximately 10-20 h), the size distribution of ubiquitin conjugates within interphase HeLa cells remained constant for at least 24 h after injection. The intracellular locations of ubiquitin and ubiquitin conjugates were determined by autoradiography, by differential sedimentation of subcellular fractions in sucrose, and by extraction of injected cells with buffer containing Triton X-100. Free ubiquitin was found mostly in the cytosolic or Triton X-100-soluble fractions. As expected, histone conjugates were located predominately in the nuclear fraction and exclusively in the Triton X-100-insoluble fraction. Although high molecular weight conjugates were enriched in the Triton X-100-insoluble fraction, their size distribution was similar to that of soluble conjugates. When injected HeLa cells were exposed to cycloheximide to inhibit protein synthesis, the size distribution of ubiquitin conjugates was similar to that found in untreated cells. Moreover, high molecular weight conjugates decreased less than 20% after inhibition of protein synthesis. These results indicate that most ubiquitin conjugates are not newly synthesized proteins which have been marked for destruction.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Erythrocytes / metabolism
  • HeLa Cells / cytology
  • HeLa Cells / metabolism
  • Humans
  • Interphase
  • Microinjections
  • Ubiquitins / administration & dosage
  • Ubiquitins / isolation & purification
  • Ubiquitins / metabolism*

Substances

  • Ubiquitins