What causes human cancer? Approaches from the chemistry of DNA damage

Genes Environ. 2016 Jul 1:38:19. doi: 10.1186/s41021-016-0046-8. eCollection 2016.

Abstract

To prevent human cancers, environmental mutagens must be identified. A common mechanism of carcinogenesis is DNA damage, and thus it is quite possible that environmental mutagens can be trapped as adducts by DNA components. It is also important to identify new types of DNA damaging reactions and clarify their mechanisms. In this paper, I will provide typical examples of our efforts to identify DNA damage by environmental agents, from chemistry-based studies. 1) Oxidative DNA damage: 8-Hydroxydeoxyguanosine (8-OHdG, 8-oxodG) was discovered during a structural study of DNA modifications caused in vitro by heating glucose, which was used as a model of cooked foods. We found that various oxygen radical-forming agents induced the formation of 8-OHdG in DNA, in vitro and in vivo. Analyses of the urinary 8-OHdG levels are useful to assess the extent of oxidative DNA damage in a human population. 2) Lipid peroxide-derived DNA adducts: We searched for mutagens that react with deoxynucleosides, in model systems of lipid peroxidation. The reaction mixtures were analyzed by high performance liquid chromatography (HPLC), and we discovered various lipid peroxide-derived mutagens, including new mutagens. Some of these adducts were detected in human DNA. These mutagens may be involved in lipid peroxide-related cancers. 3) Methylation of cytosine by free radicals: Methylation of the cytosine C-5 position is an important mechanism of carcinogenesis, in addition to gene mutations. However, the actual mechanisms of de novo methylation in relation to environmental agents are not clear. We found that cytosine C-5 methylation occurred by a free radical mechanism. The possible role of this radical-induced DNA methylation in carcinogenesis will be discussed, in relation to the presently accepted concept of cancer epigenetics. In these studies, chemical analyses of the adducts formed in model reactions led to the discoveries of new mutagens and important types of DNA modifications, which seem to be involved in human carcinogenesis.

Publication types

  • Review