Lytic to temperate switching of viral communities

Nature. 2016 Mar 24;531(7595):466-70. doi: 10.1038/nature17193. Epub 2016 Mar 16.

Abstract

Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus 'more microbes, fewer viruses'.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa / physiology
  • Anthozoa / virology*
  • Bacteriophages / pathogenicity
  • Bacteriophages / physiology
  • Coral Reefs
  • Ecosystem*
  • Genes, Viral / genetics
  • Host-Pathogen Interactions*
  • Lysogeny
  • Models, Biological
  • Virulence / genetics
  • Viruses / genetics
  • Viruses / isolation & purification
  • Viruses / pathogenicity*