Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa

Appl Environ Microbiol. 2013 Apr;79(7):2112-20. doi: 10.1128/AEM.03565-12. Epub 2013 Jan 25.

Abstract

Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Betaine / metabolism*
  • Carbon / metabolism
  • Choline / metabolism*
  • Gene Expression Regulation, Bacterial
  • Glycine / metabolism
  • Homeostasis
  • Nitrogen / metabolism
  • Pseudomonas aeruginosa / physiology*
  • Stress, Physiological
  • Water-Electrolyte Balance

Substances

  • Betaine
  • Carbon
  • Nitrogen
  • Choline
  • Glycine