Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy

Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11234-9. doi: 10.1073/pnas.1000156107. Epub 2010 Jun 4.

Abstract

Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Cryoelectron Microscopy / methods*
  • Electrons
  • Image Processing, Computer-Assisted
  • Imaging, Three-Dimensional / methods*
  • Models, Biological
  • Models, Statistical
  • Optics and Photonics
  • Scattering, Radiation
  • Schizosaccharomyces / metabolism
  • Schizosaccharomyces / physiology*
  • Spores, Fungal / metabolism
  • X-Ray Diffraction / methods*
  • X-Rays
  • Yeasts / metabolism