The movement of proteins across the insect and tick digestive system

J Insect Physiol. 2008 Feb;54(2):319-32. doi: 10.1016/j.jinsphys.2007.10.009. Epub 2007 Oct 30.

Abstract

The movement of intact proteins across the digestive system was shown in a number of different blood-feeding and non-blood-feeding insects in the orders Blattaria, Coleoptera, Diptera, Hemiptera, Lepidoptera, Orthoptera, Neuroptera and Siphonaptera, as well as in two tick families Ixodidae and Argasidae. Protein movement was observed for both normal dietary and xenobiotic proteins, which suggest that the mechanism for transfer is not substrate specific. The number of studies on the mechanism of movement is limited. The research so far suggests that movement can occur by either a transcellular or an intercellular pathway in the ventriculus with most of the research describing the former. Transfer is by continuous diffusion with no evidence of pinocytosis or vesicular transport common in mammalian systems. Proteins can move across the digestive system without modification of their primary or multimeric structure and with retention of their functional characteristics. Accumulation in the hemolymph is the result of the protein degradation rate in the gut and hemolymph and transfer rate across the digestive system and can be highly variable depending on species. Research on the development of delivery systems to enhance protein movement across the insect digestive system is in its infancy. The approaches so far considered with some success include the use of lipophilic-polyethylene glycol (PEG) polymers, the development of fusion proteins with lectins, reduced gut protease activity and the development of amphiphilic peptidic analogs. Additional research on understanding the basic mechanisms of protein delivery across the insect digestive system, the importance of structure activity in this transfer and the development of technology to improve movement across the gut could be highly significant to the future of protein and nucleic acid-based insecticide development as well as traditional chemical insecticidal technologies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Digestive System / metabolism*
  • Insect Proteins / metabolism*
  • Insecta / metabolism*
  • Protein Transport
  • Ticks / metabolism*

Substances

  • Insect Proteins