Trans-splicing and operons

WormBook. 2005 Jun 25:1-9. doi: 10.1895/wormbook.1.5.1.

Abstract

About 70% of C. elegans mRNAs are trans-spliced to one of two 22 nucleotide spliced leaders. SL1 is used to trim off the 5' ends of pre-mRNAs and replace them with the SL1 sequence. This processing event is very closely related to cis-splicing, or intron removal. The SL1 sequence is donated by a 100 nt small nuclear ribonucleoprotein particle (snRNP). This snRNP is structurally and functionally related to the U snRNAs (U1, U2, U4, U5 and U6) that play key roles in intron removal and trans-splicing, except that it is consumed in the process of splicing. More than half of C. elegans pre-mRNAs are subject to SL1 trans-splicing. About 30% are not trans-spliced at all. The remaining genes are trans-spliced by SL2. These genes are all downstream genes in closely spaced gene clusters similar to bacterial operons. They are transcribed from a promoter at the 5' end of the cluster of between 2 and 8 genes. This transcription makes a polycistronic pre-mRNA that is co-transcriptionally processed by cleavage and polyadenylation at the 3' end of each gene, and this event is closely coupled to the SL2 trans-splicing event that occurs only approximately 100 nt further downstream. Recent studies on the mechanism of SL2 trans-splicing have revealed that one of the 3' end formation proteins, CstF, interacts with the only protein known to be specific to the SL2 snRNP. The operons contain primarily genes whose products are needed for mitochondrial function and the basic machinery of gene expression: transcription, splicing and translation. Many operons contain genes whose products are known to function together. This presumably provides co-regulation of these proteins by producing a single RNA that encodes both.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics*
  • Evolution, Molecular
  • Operon*
  • RNA, Helminth / metabolism*
  • Ribonucleoproteins, Small Nuclear / physiology
  • Trans-Splicing*

Substances

  • RNA, Helminth
  • Ribonucleoproteins, Small Nuclear