Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells

Biophys J. 2006 Oct 1;91(7):2726-34. doi: 10.1529/biophysj.106.080697. Epub 2006 Jul 14.

Abstract

We determined the torque of the flagellar motor of Caulobacter crescentus for different motor rotation rates by measuring the rotation rate and swimming speed of the cell body and found it to be remarkably different from that of other bacteria, such as Escherichia coli and Vibrio alginolyticus. The average stall torque of the Caulobacter flagellar motor was approximately 350 pN nm, much smaller than the values of the other bacteria measured. Furthermore, the torque of the motor remained constant in the range of rotation rates up to those of freely swimming cells. In contrast, the torque of a freely swimming cell for V. alginolyticus is typically approximately 20% of the stall torque. We derive from these results that the C. crescentus swarmer cells swim more efficiently than both E. coli and V. alginolyticus. Our findings suggest that C. crescentus is optimally adapted to low nutrient aquatic environments.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biomechanical Phenomena
  • Caulobacter crescentus / cytology
  • Caulobacter crescentus / physiology*
  • Escherichia coli / physiology
  • Flagella / physiology*
  • Molecular Motor Proteins / physiology*
  • Torque
  • Vibrio alginolyticus / physiology

Substances

  • Molecular Motor Proteins