The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain)

Environ Microbiol. 2000 Aug;2(4):465-74. doi: 10.1046/j.1462-2920.2000.00129.x.

Abstract

We have evaluated the effects of short-term changes in incident irradiance and temperature on oxygenic photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat from the Ebro Delta, Spain, in which Microcoleus chthonoplastes was the dominant phototrophic organism. The mat was incubated in the laboratory at 15, 20, 25 and 30 degrees C at incident irradiances ranging from 0 to 1,000 micromol photons m(-2) s(-1). Oxygen microsensors were used to measure steady-state oxygen profiles and the rates of gross photosynthesis, which allowed the calculation of areal gross photosynthesis, areal net oxygen production, and oxygen consumption in the aphotic layer of the mat. The lowest surface irradiance that resulted in detectable rates of gross photosynthesis increased with increasing temperature from 50 micromol photons m(-2) s(-1) at 15 degrees C to 500 micromol photons m(-2) s(-1) at 30 degrees C. These threshold irradiances were also apparent from the areal rates of net oxygen production and point to the shift of M. chthonoplastes from anoxygenic to oxygenic photosynthesis and stimulation of sulphide production and oxidation rates at elevated temperatures. The rate of net oxygen production per unit area of mat at maximum irradiance, J0, did not change with temperature, whereas, JZphot, the flux of oxygen across the lower boundary of the euphotic zone increased linearly with temperature. The rate of oxygen consumption per volume of aphotic mat increased with temperature. This increase occurred in darkness, but was strongly enhanced at high irradiances, probably as a consequence of increased rates of photosynthate exudation, stimulating respiratory processes in the mat. The compensation irradiance (Ec) marking the change of the mat from a heterotrophic to an autotrophic community, increased exponentially in this range of temperatures.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cyanobacteria / physiology*
  • Light*
  • Oxygen Consumption / physiology*
  • Photosynthesis / physiology*
  • Spain
  • Temperature