Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure

Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2473-8. doi: 10.1073/pnas.041620898.

Abstract

With increasing interest in the effects of elevated atmospheric CO(2) on plant growth and the global carbon balance, there is a need for greater understanding of how plants respond to variations in atmospheric partial pressure of CO(2). Our research shows that elevated CO(2) produces significant fine structural changes in major cellular organelles that appear to be an important component of the metabolic responses of plants to this global change. Nine species (representing seven plant families) in several experimental facilities with different CO(2)-dosing technologies were examined. Growth in elevated CO(2) increased numbers of mitochondria per unit cell area by 1.3-2.4 times the number in control plants grown in lower CO(2) and produced a statistically significant increase in the amount of chloroplast stroma (nonappressed) thylakoid membranes compared with those in lower CO(2) treatments. There was no observable change in size of the mitochondria. However, in contrast to the CO(2) effect on mitochondrial number, elevated CO(2) promoted a decrease in the rate of mass-based dark respiration. These changes may reflect a major shift in plant metabolism and energy balance that may help to explain enhanced plant productivity in response to elevated atmospheric CO(2) concentrations.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbon Dioxide*
  • Chloroplasts / ultrastructure*
  • Microscopy, Electron
  • Mitochondria / ultrastructure*
  • Plant Development*
  • Plants / ultrastructure

Substances

  • Carbon Dioxide