| 2. Nitrogen flow | | |---|---| | flow ammonification (production of NH ₄ * from organic nitrogen, the end stage of decomposition) | magnitude [10 ¹² kg(N)/yr] 5 | | assimilation (conversion of NH ₄ ⁺ and NO ₃ ⁻ to protein by vegetation and microbes; very roughly, one half of the nitrogen is assimilated as NH ₄ ⁺ and one half as NO ₃ ⁻ , which was nitrified from NH ₄ ⁺) | 5 | | natural background flow of NH $_3$ and NO $_x$ | 0.5 | | from soil and water to the atmosphere | 0.5 | | precipitation of NH ₄ and NO _x to Earth's surface in rain and snow | 0.1 | | denitrification (conversion of soil and water NO ₃ to atmospheric N ₂ or N ₂ O, whose production rates are very roughly equal) | 0.1 | | biological nitrogen fixation (about two thirds
by continental organisms, one third by
marine) including legumes | 0.2 | | global industrial nitrogen fixation in 2000 [Contributions from fossil fuel combustion was about one third of total; the remainder is mostly fertilizer production.] | 0.12 | | river flow of fixed nitrogen to sea | 0.01 | | fixation of atmospheric N ₂ by lightning
production of stratospheric NO from N ₂ O | 0.01
0.001 |