TABLE 1

GSH half-lives in cells grown under different conditions

Apparent (*PPT_0^{GSH}) and corrected (*COT_0^{GSH}) half-lives of GSH under different growth conditions are shown. f^{GSH}, given as 100 × f^{GSH} for better readability, is the fraction of intracellular GSH converted into Cys in 1 min. Values between parentheses are the S.D. of experiments repeated at least three times (see supplemental information, Part 4). Except for the standard conditions, f^{GSH} and *COT_0^{GSH} are only given as rough guides, as their calculation is based on assumptions that may not be true under the corresponding conditions (see supplemental information, Part 4 for details). Measurement of Prot_0^{Cys}/Meta_0^{Cys} is described under "Experimental Procedures." NA, not applicable.

Condition	$^{ m app}T_{1/2}^{ m GSH}$	Prot ^{Cys} /Meta ^{Cys}	$100 \times f^{GSH}$	$^{cor}T_{1/2}^{GSH}$
	min		min ⁻¹	min
Standard (NH ₄ , SO_4^{2-})	174 (17)	1.0	0.80 (0.10)	63 (7)
Sulfur starvation (NH $_{4}^{+}$, $-$)	26 (6)	3.5	$4.47 (0.93) \text{ or } 3.89 (0.88)^a$	12 (3.5) or 14 (4) ^a
GSH 0.1 mm (NH $_{4}^{+}$, GSH)	57 (19)	1.5	NA	NA
Chromate 10 μ M (NH ₄ ⁺ , SO ₄ ²⁻)	71 (27)	2.4	$1.96 (0.63) \text{ or } 1.67 (0.51)^a$	29 (10) or 34 (13) ^a
Met 0.5 mм (NH ₄ , Met)	> 500	0.2	NA	NA
Cadmium 5 μ M (NH ₄ ⁺ , SO ₄ ²⁻)	> 500	0.2	NA	NA
$H_2O_2^b (NH_4^+, SO_4^{2-})$	> 500	0.1	NA	NA
Glu 10 mм (Glu, SO ₄ ²⁻)	214 (5)	1	0.62 (0.05)	82 (7)
Nitrogen starvation $(-, SO_4^{2-})$	201 (29)	0.9	1.96 (0.63)	66 (23)

 $[^]a$ In this case the model is different (see supplemental information, Part 4.2). b 0.2 $\mu_{\rm M}$ (final concentration) of H₂O₂ was added 3 times, at t=0,40 min, and 80 min.