Charles-Edwards (6) suggested a simple equation for examining the consequences of change in leaf photosynthetic parameters to canopy CO_2 uptake. This is adapted here for use with photon flux and ϕ_{abs} (Eq. 1). This equation assumes a rectangular hyperbolic response of the rate of CO_2 uptake to photon flux over the full range of light levels, an exponential decline in light with depth into the canopy, and a diurnal course of incident photon flux described by a sine function: $$A_{c,tot} = \frac{\alpha \phi_{abs} Q_{tot} h(A_{sat} + R)(1 - e^{-ks})}{k \alpha \phi_{abs} Q_{tot} + h(A_{sat} + R)} - 8.64 \times 10^4 (Rs)$$ (1) where terms are as defined previously² and 8.64×10^4 is the number of seconds in a day.