Cellular Electrolyte Metabolism, Table 1 Extracellular and intracellular ion concentrations and equilibrium potentials

Ion	Extracellular concentration (mM)	Intracellular concentration (mM)	Equilibrium potential (mV)
Na ⁺	145	~12	+67
K ⁺	4.5	~150	-94
H ⁺	0.00004	~0.0001	-24
Ca ²⁺	~1.5	~0.0001	+129
Ca ²⁺ Mg ²⁺	~0.5	~0.5	0
Cl ⁻	115	~10	-65
HCO ₃	25	~10	-24

Ion concentrations in millimoles per liter water. Values for mammals, modified from (Andersen et al. 2009) Table 17–3 The [Ca²⁺] are the free ion concentrations; intracellular [Cl⁻] varies considerably among cell types, ranging from \sim 5 mM in skeletal muscle to \sim 80 mM in red blood cells

The equilibrium potentials (see Eq. 4) were calculated for T = 37 °C using the listed concentrations

In the case of highly selective channels that catalyze the transmembrane movement of only a single ion type, V_{rev} is equal to the ion's equilibrium (or Nernst) potential E:

$$E = \frac{-k_{\rm B}T}{z \cdot e} \cdot \ln \left\{ \frac{C_{\rm i}}{C_{\rm e}} \right\},\tag{4}$$

 $k_{\rm B}$ is Boltzmann's constant, T the temperature in Kelvin, z the ion valence, e the elementary charge, and $C_{\rm i}$ and $C_{\rm e}$ the intracellular and extracellular ion concentrations, respectively. (Membrane potentials, and equilibrium potentials are measured relative to the extracellular solution; membrane currents are defined to be positive when the current flow is from the intracellular to the extracellular solution).