Median microtubule number in spindle model

Range meiosis I 56.5: meiosis II 47.0 Table - link microtubules
Organism Budding yeast Saccharomyces cerevisiae
Reference Winey M, Morgan GP, Straight PD, Giddings TH Jr, Mastronarde DN. Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles. Mol Biol Cell. 2005 Mar16(3):1178-88. p.1181 table 1PubMed ID15635095
Method "Fluorescence imaging of meiotic spindles was done with a green fluorescent protein (GFP)-Tub1p–expressing strain of SK1 (strain YUMY4B1). Cells were induced to sporulate synchronously as described in Straight et al. (2000). Live cells were imaged in samples taken at 6, 7, 8, 9, and 10 h from a sporulating culture at 30°C."
Comments "Table 1 lists some basic parameters derived from the 35 wild-type meiotic spindle models, including microtubule numbers and spindle lengths. Microtubules are reported as being from one SPB [spindle pole body] or the other SPB, with some instances of “continuous” microtubules. Microtubules are assigned to one SPB or the other by tracking the individual microtubule in serial sections until it ends at or within one section (~40 nm) of a SPB. The SPB proximal end of the microtubule is considered to be the minus-end such that the end in the nucleoplasm will be the plus-end. All microtubules can be tracked to a SPB, but a few microtubules have both ends close enough to each of the two SPBs that the polarity cannot be determined, and these microtubules are called continuous. These microtubules are expected to have a normal plus- and minus-end, and they are found in MI [meiosis I] and MII [meiosis II] spindles (Table 1), as well as mitotic spindles (Winey et al., 1995)."
Entered by Uri M
ID 111479