Decrease in photosynthesis that can be caused by photorespiration under current atmospheric [O2] & [CO2]

Range ≤30 %
Organism Plants
Reference Zhu XG, de Sturler E, Long SP. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol. 2007 Oct145(2):513-26. p.514 right column 2nd paragraphPubMed ID17720759
Primary Source Long SP, Drake BG (1991) Effect of the long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of C3 sedge, Scripus olneyi. Plant Physiol 96: 221–226 & Zhu X-G, Portis AR Jr, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27: 155–165 DOI: 10.1046/j.1365-3040.2004.01142.xPubMed ID16668155
Method "The aim of this study was to demonstrate the application of dynamic photosynthesis models in engineering higher light-saturated photosynthetic rates. Another aim was to determine whether total protein, expressed as protein-nitrogen, is partitioned optimally with respect to maximizing light-saturated photosynthetic rate for a typical C3 leaf and, if not, what reallocation would maximize light-saturated photosynthesis."
Comments "Under current atmospheric [CO2] and [O2], photorespiration can decrease photosynthesis by up to 30% (primary sources)."
Entered by Uri M
ID 111057