Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli

PLoS Biol. 2007 Sep;5(9):e225. doi: 10.1371/journal.pbio.0050225.

Abstract

Identification of the selective forces contributing to the origin and maintenance of sex is a fundamental problem in biology. The Fisher-Muller model proposes that sex is advantageous because it allows beneficial mutations that arise in different lineages to recombine, thereby reducing clonal interference and speeding adaptation. I used the F plasmid to mediate recombination in the bacterium Escherichia coli and measured its effect on adaptation at high and low mutation rates. Recombination increased the rate of adaptation approximately 3-fold more in the high mutation rate treatment, where beneficial mutations had to compete for fixation. Sequencing of candidate loci revealed the presence of a beneficial mutation in six high mutation rate lines. In the absence of recombination, this mutation took longer to fix and, over the course of its substitution, conferred a reduced competitive advantage, indicating interference between competing beneficial mutations. Together, these results provide experimental support for the Fisher-Muller model and demonstrate that plasmid-mediated gene transfer can accelerate bacterial adaptation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Biological / genetics*
  • Bacteria / genetics*
  • Escherichia coli
  • Models, Genetic*
  • Mutation*
  • Recombination, Genetic*
  • Selection, Genetic*