Stable genetic transformation of intact Nicotiana cells by the particle bombardment process

Proc Natl Acad Sci U S A. 1988 Nov;85(22):8502-5. doi: 10.1073/pnas.85.22.8502.

Abstract

We show that the genetic transformation of Nicotiana tabacum can be achieved by bombarding intact cells and tissues with DNA-coated particles. Leaves or suspension culture cells were treated with tungsten microprojectiles carrying plasmid DNA containing a neomycin phosphotransferase gene. Callus harboring the foreign gene was recovered from the bombarded tissue by selection on medium containing kanamycin. Kanamycin-resistant plants have subsequently been regenerated from the callus derived from leaves. Transient expression of an introduced beta-glucuronidase gene was used to assess the efficiency of DNA delivery by microprojectiles. The frequency of cells that were stably transformed with the neomycin phosphotransferase gene was a few percent of the cells that transiently expressed the beta-glucuronidase gene. These results show that gene transfer by high-velocity microprojectiles is a rapid and direct means for transforming intact plant cells and tissues that eliminates the need for production of protoplasts or infection by Agrobacterium.