ATP-driven stepwise rotation of FoF1-ATP synthase

Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1333-8. doi: 10.1073/pnas.0407857102. Epub 2005 Jan 24.

Abstract

FoF1-ATP synthase (FoF1) is a motor enzyme that couples ATP synthesis/hydrolysis with a transmembrane proton translocation. F1, a water-soluble ATPase portion of FoF1, rotates by repeating ATP-waiting dwell, 80 degrees substep rotation, catalytic dwell, and 40 degrees -substep rotation. Compared with F1, rotation of FoF1 has yet been poorly understood, and, here, we analyzed ATP-driven rotations of FoF1. Rotation was probed with an 80-nm bead attached to the ring of c subunits in the immobilized FoF1 and recorded with a submillisecond fast camera. The rotation rates at various ATP concentrations obeyed the curve defined by a Km of approximately 30 microM and a Vmax of approximately 350 revolutions per second (at 37 degrees C). At low ATP, ATP-waiting dwell was seen and the kon-ATP was estimated to be 3.6 x 10(7) M(-1) x s(-1). At high ATP, fast, poorly defined stepwise motions were observed that probably reflect the catalytic dwells. When a slowly hydrolyzable substrate, adenosine 5'-[gamma-thio]triphosphate, was used, the catalytic dwells consisting of two events were seen more clearly at the angular position of approximately 80 degrees . The rotational behavior of FoF1 resembles that of F1. This finding indicates that "friction" in Fo motor is negligible during the ATP-driven rotation. Tributyltin chloride, a specific inhibitor of proton translocation, slowed the rotation rate by 96%. However, dwells at clearly defined angular positions were not observed under these conditions, indicating that inhibition by tributyltin chloride is complex.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / analogs & derivatives*
  • Adenosine Triphosphate / metabolism*
  • Adenosine Triphosphate / pharmacology
  • Bacillus / enzymology
  • Dicyclohexylcarbodiimide / pharmacology
  • Kinetics
  • Models, Molecular
  • Protein Conformation
  • Protein Subunits / chemistry
  • Protein Subunits / metabolism
  • Proton-Translocating ATPases / chemistry
  • Proton-Translocating ATPases / metabolism*
  • Proton-Translocating ATPases / ultrastructure
  • Rotation

Substances

  • Protein Subunits
  • adenosine 5'-O-(3-thiotriphosphate)
  • Dicyclohexylcarbodiimide
  • Adenosine Triphosphate
  • Proton-Translocating ATPases