Signal Event	Stimulus	Condition	Signal Duration	Reference
Erk phosphorylation	Growth Factors	Cell culture	10' – 24h	(Yamamoto <i>et al</i> , 2006) (Wu <i>et al</i> , 1994)
Erk phosphorylation	Antigenic peptides	Thymocyte selection (in vivo)	> 70 h	(McNeil et al, 2005)
Erk phosphorylation	Developmental Signals	Mouse development (in vivo)	up to 72 h	(Corson et al, 2003)
PI3K activity	insulin	Cell culture	10' - 8h	(Balbis <i>et al</i> , 2000; Rose <i>et al</i> , 1998)
Akt phosphorylation	NGF	Cell culture	10' - 15h	(Balbis <i>et al</i> , 2000; Chang <i>et al</i> , 2003)
cAMP increase or PKA activation	Isoprotenerol	Cell culture	5' - 2 h	(Gharami and Das, 2004; Violin et al, 2008)
Smad2 phosphorylation	TGFbeta	Cell culture	2 h – 24 h	(Nicolas and Hill, 2003; Zhu et al, 2005)
Nuclear Smad2- Smad4 complex formation	TGFbeta	Cell culture	2 h – 6 h	(Nicolas et al, 2003)
Nuclear Translocation of Smad2	TGFbeta	Cell culture	2 h – 6 h	(Nicolas et al, 2003)
Smad2 DNA binding	TGFbeta	Cell culture	2 h – 6 h	(Nicolas et al, 2003)
Smad2 phosphorylation	TGFbeta	Liver regeneration (in vivo)	> 120h	(Macias-Silva et al, 2002)
STAT activation	Cytokines	Cell culture	Minutes to several hours	(Brysha et al, 2001; Buettner et al, 2002)
STAT3 DNA binding	Cytokines	Liver regeneration (in vivo)	8 h	(Cressman et al, 1996)
NF-kB DNA binding	Cytokines	Cell culture	1 h – 6 h	(Hoffmann et al, 2002; Werner et al, 2005)
NF-kB DNA binding	Cytokines	Liver regeneration (in vivo)	~ 10 h	(Kovalovich et al, 2000)

Table \$1: Signal durations of intracellular signaling pathways. The time a given signal remains significantly elevated over the basal level was estimated from literature studies (see references)

Signaling event	Stimulus	Cell Type	Inhibitor	Duration	Reference
				(no inhibitor)	
NF-κB binding	IL1beta	epithelial	ActD	~320'	(Hershko et al,
to DNA		-			2004)
NF-κB binding	IL1beta	epithelial	CHX	~320'	(Hershko et al,
to DNA					2004)
Smad1/5	TGFbeta	BAECs	CHX	~120'	(Valdimarsdottir et
phosphorylation	II 40		A - (D	001	al, 2006)
STAT3 binding to DNA	IL-10	Macrophages	ActD	~60'	(Niemand et al, 2003)
STAT5	G-CSF	32D	ActD	~20'	(Zhuang <i>et al</i> ,
phosphorylation					2005)
STAT5	G-CSF	32D	CHX	~20'	(Zhuang et al,
phosphorylation					2005)
STAT5 binding to DNA	G-CSF	32D	ActD	~20'	(Zhuang <i>et al</i> , 2005)
STAT5 binding	G-CSF	32D	CHX	~20'	(Zhuang et al,
to DNA					2005)
Erk	EGF	Swiss 3T3	CHX	~45'	(Alessi et al,
phosphorylation					1995)
Erk	serum	fibroblasts	CHX	~120'	(Sun et al, 1993)
phosphorylation			0.07		(4 % (4 000=)
Erk	EGF	HeLa	CHX	~30'	(Amit et al, 2007)
phosphorylation Frk	HRG	MCF7	CHX	~120'	(Nagashima et al,
phosphorylation	nkG	WICF7	СПХ	~120	(Nagashina et al, 2007)
Nuclear Erk	serum	CCL39	ActD	?	(Volmat et al,
phosphorylation					2001)
Nuclear Erk	serum	CCL39	CHX	?	(Volmat et al,
phosphorylation					2001)
Erk kinase	Angiotensin II	VSMC	ActD	~60'	(Duff et al, 1995)
activitiy	FOE		OLIV.	001	(4-1)-(-1,0007)
JNK	EGF	HeLa	CHX	~30'	(Amit et al, 2007)
phosphorylation JNK	H ₂ O ₂	293T	ActD	~240'	(Teng et al, 2007)
phosphorylation	Π ₂ Ο ₂	2931	ACID	~240	(Telly et al, 2001)
JNK	H ₂ O ₂	293T	CHX	~240'	(Teng et al, 2007)
phosphorylation	202	2551	J. 171		(. s.i.g s. a., 2001)
JNK kinase	TNFalpha	Mesangial	ActD	~20'	(Guo et al, 1998)
activity		Ŭ.			
JNK kinase	TNFalpha	Mesangial	CHX	~20'	(Guo et al, 1998)
activity					
p38	EGF	HeLa	CHX	~30'	(Amit et al, 2007)
phosphorylation					

Table S2: Transcription/translation inhibitors enhance the signal duration (and eventually the amplitude) of intracellular signaling pathways. Listed are literature studies where time courses of signaling protein activity was measured in the presence and in the absence of a transcription inhibitor (actinomycin D = ActD) and/or a translation inhibitor (cycloheximide = CHX). The column 'signal duration (no inhibitor)' indicates signal duration in cells not treated with inhibitor and thus gives a hint about the time scale of transcriptional feedback regulation.

Signal Event	Cellular Response	Stimulus (cell type)	Method	Threshold time	Reference
Mek activity	S-Phase Entry	FGF (NIH3T3)	Inhibitor addition	14 h ª	(Yamamoto et al, 2006)
Mek activity	S-Phase Entry	PDGF (NIH3T3)	Inhibitor addition	> 8 h ^a	(Jones and Kazlauskas, 2001)
Mek activity	S-Phase Entry	PDGF (IIC9)	Inhibitor addition	> 4 h ª	(Weber et al, 1997)
PI3K activity	S-Phase Entry	insulin (Rat1)	Inhibitor addition or antibody injection	13 h ª	(Rose <i>et al</i> , 1998)
Mek activity	Cell Motility	HGF (MDCK)	Inhibitor addition	> 30 ^{, b}	(Tanimura et al, 2002)
Mek activity	Cell Motility	EGF (SCC-11F)	Inhibitor addition	4 h ^b	(McCawley et al, 1999)
Mek activity	Differentiation	TPA (K562)	Inhibitor addition	18 h ⁵	(Racke <i>et al</i> , 1997)
Mek activity	Differentiation	M-CSF (myeloid)	Inhibitor addition	> 24 h ^b	(Gobert Gosse et al, 2005)
Mek activity	Thymocyte positive selection	Antigenic peptides (in vivo)	Inhibitor addition	> 24 h ^b	(McNeil <i>et al</i> , 2005)
TGFbeta receptor activity	Growth arrest	TGFbeta (HaCaT)	Inhibitor addition	12-14 h ª	(Nicolas et al, 2003)
Calcineurin activity	Thymocyte lineage commitment	PMA + lonomycin (thymocytes)	Inhibitor addition	~8 h ª	(Adachi et al, 2000)
PKA activity	Astroglial Differentiation	Isoprotenerol (astrocytes)	Inhibitor addition	< 2 h ^e	(Gharami et al, 2004)
Mek activity	Late-phase Gene Expression	HGF (MDCK)	Inhibitor addition	> 30' ^b	(Tanimura et al, 2002)
Mek activity	MMP-9 expression	EGF (SCC-11F)	Inhibitor addition	4 h ⁵	(McCawley et al, 1999)
Erk phosphorylation	Late-phase Gene Expression	LPA (Rat-1)	Stimulus- strength specific signal duration	~1 h ^{b,c}	(Cook <i>et al</i> , 1999)

Table S3: Commitment Times in Intracellular Signaling. Listed are literature studies where activity of signaling intermediates was blocked at different stimulation times (stimulus addition at t = 0 h) by incubating cells with rapidly-acting small-molecule inhibitors. The threshold times indicate the signal duration required to irreversibly commit the cell population to the given phenotypic response (stimulation occured at t = 0 h). One study (Cook *et al*, 1999) employed a different approach: low and high doses of LPA induce transient and sustained Erk phosphorylation, respectively, and some Erk-dependent downstream genes (e.g., Fra1) were shown to be selectively expressed upon sustained Erk activation. Superscript legend: (a) half of the cells perform cellular response if signal is terminated at the threshold time; (b) no response observed if signal is terminated at the threshold time; (c) Erk dependency of latephase gene expression verified by Erk inhibitor; (d) half-maximal thymidine incorporation is observed if signal is terminated at the threshold time; (e) complete commitment occured before the indicated threshold time

Stimulus	Cellular Response	Cell type	Method	Threshold time	Reference
EGF	S-Phase	MDCK	Medium	~6 h ª	(Pennock and
	Entry		exchange		Wang, 2003)
EGF	S-Phase	BT20	Medium	~6 h ª	(Pennock et al,
	Entry		exchange		2003)
Serum	S-Phase	MDCK	Medium	~6 h ª	(Pennock et al,
	Entry		exchange		2003)
Serum	S-Phase	BT20	Medium	~6 h ª	(Pennock et al,
	Entry		exchange		2003)
Thrombin	S-Phase	CCL34	Rapid	8 h ^b	(Van Obberghen-
	Entry		Ligand		Schilling et al,
			Removal by		1982)
Forskolin	S-Phase	Thursoutee	Competitor Medium	20 h ^b	(Degar of al. 1007)
FOISKOIII		Thyrocytes		20 11	(Roger et al, 1987)
PDGF	Entry	NIH3T3	exchange Medium	9 h °	(longs of al 2004)
PDGF	S-Phase Entry	MILISTS	exchange	911	(Jones et al, 2001)
	Liluy		(acid wash)		
lonomycin	Thymocyte	Thymocytes	Medium	~8 h ª	(Adachi et al, 2000)
+	lineage	Triyinocytes	exchange	011	(Addenii et ai, 2000)
PMA	commitment		Oxeriange		
FGF	Differentiation	Myoblasts	Medium	~2.5 h ª	(Clegg et al, 1987)
deprivation	Billororitiation	my oblidoto	exchange	2.011	(Slogg of all, 1991)
NGF	Apoptosis	Sympathetic	Medium	~24 h ª	(Deshmukh et al,
deprivation		Neurons	exchange		2000)
IL-3	Apoptosis	myeloid	Medium	~24 h ª	(Ekert et al, 2004)
deprivation		-	exchange		
High Glucose	Late-phase	Min6	Medium	2-3 h⁵	(Glauser and
	Gene		exchange		Schlegel, 2006)
	Expression				
PDGF	c-myc	NIH3T3	Medium	30' в	(Jones et al, 2001)
	expression		exchange		
			(acid wash)		
TNF-alpha	RANTES	Fibroblasts	Medium	~2 h ^b	(Hoffmann et al,
	expression		exchange		2002)

Table S4: Commitment Times for Extracellular Stimulation. Listed are literature studies where extracellular stimuli were removed (or re-added) at different stimulation times, e.g., by medium exchange (see Methods). The threshold times indicate the signal duration required to irreversibly commit the cell population to the given phenotypic response (stimulation occured at t=0 h). Superscript legend: (a) half of the cells perform cellular response if signal is terminated at the threshold time; (b) no response observed if signal is terminated at the threshold time; (c) half-maximal thymidine incorporation is observed if signal is terminated at the threshold time.