Table 1 Common pH dependent molecules in biology. Common weak acids and weak-bases in a cell are listed. Note that for amino acid side chains or termini the pK_{α} values given are those of free amino acids. These values can change drastically when incorporated into a protein depending on the structure of the protein and its surroundings.

protein residues		pK_q
amino-terminus	H -N-H ← H+ H+ H	8.0
carboxyl-terminus	_C-OH	3.1
aspartic/glutamic acid		4.4
arginine	- N-H H N-H + H*	12.0
cysteine	—s—н ==== —s- + н+	8.5
histidine	-CH—NH ← CH—NH + H+	6.5
lysine	-N-H + H*	10.0
tyrosine	—————————————————————————————————————	10.0
metabolites		
ammonium	H—N—H + H⁺ € H—N⁺—H	9.2
phosphate	$0 = P - OH \longrightarrow 0 = P - OH + H^{*} \longrightarrow 0 = P - O^{-} + 2H^{*} \longrightarrow 0 = P - O^{-} + 3H^{*}$	2.1, 7.2, 12.7