Energy metabolism in animals and man

KENNETH BLAXTER Kt FRS

Former Director, Rowett Research Institute, Aberdeen, Scotland

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York New Rochelle

Melbourne Sydney

Table 3.4. Comparison of the metabolisable energy (in kJ/100 g) of human foods on a fresh weight basis as estimated by methods used in the UK (Paul & Southgate 1978) and the USA (Merrill & Watt 1955).

Food	Metabolisable energy		Ratio of USA/UK
	UK	USA	values
Cereals			
Bread, brown	948	1050	1.11
Bread, white	991	1012	1.02
Flour, wholemeal	1351	1368	1.01
Flour, white	1433	1477	1.03
Oatmeal	1698	1669	0.98
Rice, polished	1536	1540	1.00
Dairy products		•	
Butter	3041	3130	1.03
Cheese, cheddar	1682	1732	1.03
Eggs	612	707	1.16
Milk, fresh whole	272	285	1.05
Meat			
	905	966	1.07
Beef, corned	736	740	1.01
Beef, steak, raw	642	602	0.94
Liver, raw	. 012	**-	
Fruit	196	230	1.17
Apples, eating	776	1243	1.60
Apricots, dried	337	431	1.28
Bananas	121	330	2.73
Currants, black, raw		146	2.01
Gooseberries, green, raw	73 95	134	1.41
Grapefruit	150	205	1.37
Oranges	130	203	1.57
Vegetables		1464	1.00
Beans, butter, raw	1162	1464	1.26
Beans, runner, raw	83	129	1.56
Cabbage, Savoy, raw	109	126	1.15
Carrots, old, raw	- 98	134	1.36
Peas, fresh, raw	283	339	1.20
Nuts			
Peanuts	2364	2410	1.02
Walnuts	2166	2177	1.02

the primary estimate of amounts consumed might influence any conclusions drawn.

3.5.2 The uniqueness of the metabolisable energy factors

The methods employed by Paul & Southgate (1978) to estimate the metabolisable energy of diets for man predicate that unavailable carbohydrate has no nutritive value and that the factors for protein, fat and