TABLE 1. mRNA half-life determination in S1-depleted cells

		half-life (min) ^a					
	pn	pnp ^{+b}		Δ <i>pnp-751</i> ^b			
mRNA	ara	glu	ara	glu			
pnp ^c glnS	1.8 2.3	6.4 2.3	5.5 2.1	6.4 2.2			

^aCalculated as detailed in Materials and Methods; the reported results are the average of two independent determinations.

TABLE 2. mRNA half-life in S1-overexpressing cells

		pnp ^{+a}			Δpnp-751 ^a		
		half-life	e (min) ^c		half-life (min) ^c		
mRNA	R.A. ^b	-IPTG	+IPTG	R.A. ^b	-IPTG	+IPTG	
pnp ^d	2.2	2.3	27.9	0.6	4.3	10.7	
pnp-deaD ^e	10.8	3.4	17.1	1.8	2.2	23.0	
cspE	1.0	4.0	29.8	0.8	4.9	6.7	
glnS	1.1	3.1	37.6	0.7	1.9	3.4	
glyA	1.1	4.6	>48	0.3	4.2	10.8	
rpsO ^f	1.9	2.8	20.6	1.5	2.3	3.7	

^aCultures of C-1a (pnp^+) and C-5691 $(\Delta pnp-751)$ with plasmids pQE31-S1 and pREP4 grown and experiment performed as detailed in Figure 7 legend.

^bCultures of C-5698 (pnp^+) and C-5707 (Δpnp -751) grown as detailed in Materials and Methods and in the legends of Figures 4 and 5.

[°]For pnp^+ , the sum of 2.25- and 2.5-kb mRNA and for Δpnp -751 strain, the sum of 1.3-, 0.7-, and 0.3-kb signals were considered for pnp half-life calculation.

^bRelative abundance, calculated as the ratio between mRNA amounts in induced and noninduced cultures 60 min after IPTG addiction.

^cCalculated as detailed in Materials and Methods, the reported half-lives are the average of at least two independent determinations in all cases but the cspE and glyA mRNA half-lives in pnp^+ cells without IPTG, which are the results of a single determination. ^dFor pnp^+ , the sum of 2.25- and 2.5-kb mRNA and, for $\Delta pnp-751$, the sum of 1.3-, 0.7-, and 0.3-

For pnp^+ , the sum of 2.25- and 2.5-kb mRNA and, for Δpnp -751, the sum of 1.3-, 0.7-, and 0.3-kb signals were considered for half-life calculation.

^eSignals corresponding to 5.4- and 3.4-kb-long RNAs (terminating at the terminator *deaDt*; Zangrossi et al. 2000) were considered for half-life calculation in the pnp^+ and $\Delta pnp-751$, respectively.

^fThe sum of the two signals detected (see Figure 7) was considered for half-life calculation in both the pnp^+ and $\Delta pnp-751$.