## 2.6 Values of the parameters used in simulations

A natural time scale in the problem is  $1/\gamma$  and velocities can be conveniently expressed in units of  $\beta_0=D/L$ . The analysis of both persistence data and BMDC trajectories in 2D was performed with a single set of parameters :

 $-\gamma^{-1} = 15$  min which is a typical relaxation time of large actin protrusions,

 $-\beta_0 = 0.40 \ \mu \mathrm{m.min}^{-1}$  which is a typical actin flow velocity.

Note that the order of magnitude for L is  $L=5~\mu\mathrm{m}$  so that  $L^2/D=2~\mathrm{min}$ . One therefore has  $L^2/D<\gamma^{-1}$  as expected. The best fit for both the persistence data and the probability distribution of BMDC trajectories was then obtained for  $K\approx 6.10^3~\mu\mathrm{m}^2.\mathrm{min}^{-3}$  and  $K_c\approx 10^4~\mu\mathrm{m.min}^{-1}$ .

The scales  $\beta_0$  and  $\gamma^{-1}$  used for the fitting of the 7 experimental data sets are indicated in Table S1.

Table S1: Scaling parameters in fit of experimental data to the master curve.

|                                        | mBMDC 2D       | BMDC 2D         | BMDC 1D         | RPE1 2D         | RPE1 1D         | Myeloid 3D     | BMDC 3D         |
|----------------------------------------|----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|
| $\beta_0 \; (\mu \mathrm{m.min}^{-1})$ | $1.6 \pm 0.20$ | $0.38 \pm 0.03$ | $0.52 \pm 0.04$ | $0.05 \pm 0.04$ | $0.06 \pm 0.04$ | $1.6 \pm 0.10$ | $1.60 \pm 0.20$ |
| $\gamma^{-1}$ (min)                    | $15 \pm 1.2$   | $15 \pm 1.1$    | $47 \pm 3.5$    | $11 \pm 0.9$    | $95 \pm 7$      | $4.5 \pm 0.58$ | $25 \pm 1.4$    |