2.6 Values of the parameters used in simulations A natural time scale in the problem is $1/\gamma$ and velocities can be conveniently expressed in units of $\beta_0=D/L$. The analysis of both persistence data and BMDC trajectories in 2D was performed with a single set of parameters : $-\gamma^{-1} = 15$ min which is a typical relaxation time of large actin protrusions, $-\beta_0 = 0.40 \ \mu \mathrm{m.min}^{-1}$ which is a typical actin flow velocity. Note that the order of magnitude for L is $L=5~\mu\mathrm{m}$ so that $L^2/D=2~\mathrm{min}$. One therefore has $L^2/D<\gamma^{-1}$ as expected. The best fit for both the persistence data and the probability distribution of BMDC trajectories was then obtained for $K\approx 6.10^3~\mu\mathrm{m}^2.\mathrm{min}^{-3}$ and $K_c\approx 10^4~\mu\mathrm{m.min}^{-1}$. The scales β_0 and γ^{-1} used for the fitting of the 7 experimental data sets are indicated in Table S1. Table S1: Scaling parameters in fit of experimental data to the master curve. | | mBMDC 2D | BMDC 2D | BMDC 1D | RPE1 2D | RPE1 1D | Myeloid 3D | BMDC 3D | |--|----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------| | $\beta_0 \; (\mu \mathrm{m.min}^{-1})$ | 1.6 ± 0.20 | 0.38 ± 0.03 | 0.52 ± 0.04 | 0.05 ± 0.04 | 0.06 ± 0.04 | 1.6 ± 0.10 | 1.60 ± 0.20 | | γ^{-1} (min) | 15 ± 1.2 | 15 ± 1.1 | 47 ± 3.5 | 11 ± 0.9 | 95 ± 7 | 4.5 ± 0.58 | 25 ± 1.4 |