Table 1 | The ‘Big Five’ mass extinction events

Event

Proposed causes

The Ordovician event®*%¢ ended ~443 Myr ago; within 3.3 to
1.9 Myr 57% of genera were lost, an estimated 86% of species.

The Devonian event*®#677% ended ~359 Myr ago; within 29 to
2 Myr 35% of genera were lost, an estimated 75% of species.

The Permian event>*7-72 ended ~251 Myr ago; within
2.8 Myr to 160 Kyr 56% of genera were lost, an estimated
969% of species.

The Triassic event’*”® ended ~200 Myr ago; within 8.3 Myr
to 600 Kyr 47% of genera were lost, an estimated 80% of
species.

The Cretaceous event**-¢°7¢7¢ ended ~65 Myr ago; within
2.5 Myr to less than a year 40% of genera were lost, an
estimated 76% of species.

Onset of alternating glacial and interglacial episodes; repeated marine transgressions and
regressions. Uplift and weathering of the Appalachians affecting atmospheric and ocean chemistry.
Sequestration of CO,.

Global cooling (followed by global warming), possibly tied to the diversification of land plants, with
associated weathering, paedogenesis, and the drawdown of global CO,. Evidence for widespread
deep-water anoxia and the spread of anoxic waters by transgressions. Timing and importance of
bolide impacts still debated.

Siberian volcanism. Global warming. Spread of deep marine anoxic waters. Elevated H,S and CO»
concentrations in both marine and terrestrial realms. Ocean acidification. Evidence for a bolide
impact still debated.

Activity in the Central Atlantic Magmatic Province (CAMP) thought to have elevated atmospheric
CO; levels, which increased global temperatures and led to a calcification crisis in the world oceans.

Abolideimpactinthe Yucatén is thought to have led to a global cataclysm and caused rapid cooling.
Preceding the impact, biota may have been declining owing to a variety of causes: Deccan
volcanism contemporaneous with global warming; tectonic uplift altering biogeography and
accelerating erosion, potentially contributing to ocean eutrophication and anoxic episodes. CO,

spike just before extinction, drop during extinction.

Myr, million years. Kyr, thousand years.
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This paper discusses the definition of mass extinctions and mass depletions,
and the relative role of origination versus extinction rates in causing the
diversity reductions that characterize the Big Five.
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