Table 1. Tether forces and calculated membrane tension values for various cell types under different conditions. Values obtained on blebs or upon cytoskeleton disruption, as well as those entries marked **, are real in-plane membrane tensions, while the others are apparent membrane tensions, possibly including a cytoskeleton attachment component.

	Tether force (pN)	Membrane tension (pN μ m ⁻¹)*	Reference
C. elegans sperm cell			
—isotonic conditions**	35	150	[29]
-hyperosmotic shock**	15	30	
Keratocyte			
—no treatment	54	276	[27]
	\sim 40	Not calculated	[36]
—on blebs	~33	~100	[27]
—actin cytoskeleton disruption	20	35	[36]
(cytochalasin)			
Melanoma cells			
—on blebs	15	11	[25]
—on attached membranes	26	32	
—actin cytoskeleton disruption	Not applicable	18	[35]
(cytochalasin)	(tension		
	measured by		
	interferometry)		
Epithelial cells			
—on blebs	8	3	[25]
—on apical membranes	22	22	
Neutrophils			
—resting	8.5	Not calculated	[17]
—activated (chemoattractant addition)	16.6		
—inhibit myosin	~14		
Fibroblasts	7	Not calculated	[37]
Endothelial cells, epithelial-like cells	~30	Not calculated	[38]
and brain tumor cells			
—All three cell types, actin cytoskeleton	\sim 15		
disruption (latrunculin)			
Mitotic HeLa cells			
—on glass**	~ 20	Not calculated	[30]
—on fibronectin**	~30		

^{*} κ used to calculate the membrane tension from the tether force ranged from 1–3 \times 10⁻¹⁹ N m.

- [17] Houk A R, Jilkine A, Mejean C O, Boltyanskiy R, Dufresne E R, Angenent S B, Altschuler S J, Wu L F and Weiner O D 2012 Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration *Cell* 148 175–88
- [25] Dai J and Sheetz M P 1999 Membrane tether formation from blebbing cells *Biophys. J.* 77 3363–70
- [27] Lieber A D, Yehudai-Resheff S, Barnhart E L, Theriot J A and Keren K 2013 Membrane tension in rapidly moving cells is determined by cytoskeletal forces *Curr. Biol.* 23 1409–17
- [29] Batchelder E L, Hollopeter G, Campillo C, Mezanges X, Jorgensen E M, Nassoy P, Sens P and Plastino J 2011 Membrane tension regulates motility by controlling lamellipodium organization *Proc. Natl Acad. Sci. USA* 108 11429–34
- [30] Lafaurie-Janvore J, Maiuri P, Wang I, Pinot M, Manneville J-B, Betz T, Balland M and Piel M 2013 ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge *Science* 339 1625–9

^{**}Tubes pulled in different regions of the cell with different cytoskeleton organizations give identical values, so contribution of cytoskeleton attachment to tether force is considered negligible.

- [35] Peukes J and Betz T 2014 Direct measurement of the cortical tension during the growth of membrane blebs *Biophys. J.* 107 1810–20
- [36] Gabella C, Bertseva E, Bottier C, Piacentini N, Bornert A, Jeney S, Forro L, Sbalzarini I F, Meister J J and Verkhovsky A B 2014 Contact angle at the leading edge controls cell protrusion rate *Curr. Biol.* 24 1126–32
- [37] Raucher D and Sheetz M P 2000 Cell spreading and lamellipodial extension rate is regulated by membrane tension *J. Cell Biol.* **148** 127–36
- [38] Sun M, Graham JS, Hegedüs B, Marga F, Zhang Y, Forgacs G and Grandbois M 2005 Multiple membrane tethers probed by atomic force microscopy *Biophys. J.* 89 4320–9