| Ligand-receptor | F _u (pN) | ΔH (kcal/mol) | ΔG (kcal/mol) | $r_{ m eff}$ (Å) | |--|--|--|---|-------------------------| | Avidin-biotin Avidin-iminobiotin Streptavidin-biotin Avidin-desthiobiotin Streptavidin-iminobiotin | 160 ± 20
85 ± 10
257 ± 25
94 ± 10
135 ± 15 | -21.5
-11.6
-32.0
-13.5
NA | -20.4
-14.3
-18.3
-16.5
-12.2 | 9.3
9.5
9.3
10 | Fig. 1. (A) Tabulation of ligand-receptor unbinding forces and the corresponding thermodynamic values. Force measurements were carried out with a scanned-stylus-type AFM (14). Thermodynamic values were taken from Green (5), except those for streptavidin-biotin, taken from Weber et al. (15). Calorimetric measurements for avidin-desthiobiotin were performed at 25°C in a MicroCal Omega titration calorimeter. Forty 2- μ l injections of ligand solution were titrated at 4-min intervals into 60 μ M solutions of receptor. (B) Plot of unbinding force versus free energy for avidin-biotin (\bullet), avidin-iminobiotin (\circ), streptavidin-biotin (\bullet), avidin-desthiobiotin (\circ), and streptavidin-iminobiotin (\bullet). (\bullet) Plot of unbinding force versus enthalpy. ## N. M. Green, Adv. Prot. Chem. 29, 85 (1975). - 14. There is as much as 20% variability among the different methods used in the calibration of cantilevers [V. T. Moy, E.-L. Florin, H. E. Gaub, unpublished results; J. P. Cleveland, S. Manne, D. Bocek, P. K. Hansma, Rev. Sci. Instrum. 64, 403 (1993); J. L. Hutter and J. Bechhoefer, ibid., p. 1868; T. J. Senden and W. A. Ducker, Langmuir 10, 1003 (1994)]. The values reported here are based on cantilevers calibrated with a macroscopic reference lever in a method that does not depend on the high-frequency response of the cantilever. - P. C. Weber, J. J. Wendololoski, M. W. Pantoliano, F. R. Salemme, J. Am. Chem. Soc. 114, 3197 (1992).