Table 1. T Cell Development by the Numbers.

Population	Number	Residence time	Refs
BM ^a			
HSC	17×10^{3}	∞^{b}	[4,14,80]
MPP	4.2×10^{6}	70 days	[4]
CLP	2.8×10^{5}	60 days	[4]
Blood ^c			
LSK	270	n.d. ^d	[18]
HSC	90	6 min	[18,24]
MPP	180	n.d.	[18,25,26]
CLP	180	n.d.	[25,26]
CTP	594	n.d.	[19]
TSP ^e	1800	n.d.	[25]
Thymus ^f			
TSP	160	60 h ^g	[38,49]
ETP	$2-3 \times 10^4$	216–288 h	[42,49]
DN2	$2-3 \times 10^4$	48–66 h	[42,49]
DN3	$2-3 \times 10^6$	48–96 h	[42,49,59]
DN3a	1.6×10^{6}	n.d.	[81]
DN3b	4×10^5	n.d.	[81]
DP	97×10^{6}	76 h	[60,61]
Pre-selection DP	88 × 10 ⁶	60 h	[60,61]
Post-selection DP	8.5×10^{6}	16 h	[60,61]
SP	17×10^{6}	130 h	[60,61]
CD4 SP	12 × 10 ⁶	130 h	[60,61]
CD8 SP	4×10^{6}	130 h	[60,61]
T regulatory	$5-8 \times 10^4$	130 h	[60,65]

^aBased on 2.8×10^8 total nucleated cells [80].

- Busch, K. et al. (2015) Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546
- Sawai, C.M. et al. (2016) Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. *Immunity* 45, 597–609

^bRate of self-renewal: 1/110 to 1/10 per day.

cEstimated based on blood volume of 72 ml/kg body weight and 25 g body weight [82].

^dNot determined.

eLin-CD135+CD27+

 $^{^{\}rm f}$ Based on 1–2 \times 10 $^{\rm 8}$ total thymocytes in 8–10-week-old mice.

⁹Time of occupancy of individual TSP niche: 9-11 days [38].

- 18. Schwarz, B.A. and Bhandoola, A. (2004) Circulating hematopoietic progenitors with Tlineage potential. *Nat. Immunol.* 5, 953–960
- Krueger, A. and von Boehmer, H. (2007) Identification of a T lineage-committed progenitor in adult blood. *Immunity* 26, 105– 116
- Wright, D.E. et al. (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936
- Serwold, T. et al. (2009) Reductive isolation from bone marrow and blood implicates common lymphoid progenitors as the major source of thymopoiesis. Blood 113, 807–815
- Saran, N. et al. (2010) Multiple extrathymic precursors contribute to T-cell development with different kinetics. Blood 115, 1137– 1144
- 38. Zietara, N. et al. (2015) Multicongenic fate mapping quantification of dynamics of thymus colonization. J. Exp. Med. 212, 1589–1601
- Porritt, H.E. et al. (2003) Kinetics of steady-state differentiation and mapping of intrathymic-signaling environments by stem cell transplantation in nonirradiated mice. J. Exp. Med. 198, 957–962
- Manesso, E. et al. (2013) Computational modelling of T-cell formation kinetics: output regulated by initial proliferation-linked deferral of developmental competence. J. R. Soc. Interface 10, 20120774
- Egerton, M. et al. (1990) Kinetics of mature T-cell development in the thymus. Proc. Natl. Acad. Sci. U. S. A. 87, 2579–2582
- Stritesky, G.L. et al. (2013) Murine thymic selection quantified using a unique method to capture deleted T cells. Proc. Natl. Acad. Sci. U. S. A. 110, 4679–4684
- Sawicka, M. et al. (2014) From pre-DP, post-DP, SP4, and SP8 thymocyte cell counts to a dynamical model of cortical and medullary selection. Front. Immunol. 5, 19

- 65. Moran, A.E. et al. (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289
- Boggs, D.R. (1984) The total marrow mass of the mouse: a simplified method of measurement. Am. J. Hematol. 16, 277–286
- 81. Visan, I. et al. (2010) Lunatic fringe enhances competition for Deltalike Notch ligands but does not overcome defective pre-TCR signaling during thymocyte β-selection in vivo. J. Immunol. 185, 4609–4617
- Diehl, K.H. et al. (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 21, 15–23

indicated populations, respectively. TSP, thymus-seeding progenitor; LSK, Lin⁻Sca-1⁺Kit⁺; HSC, hematopoietic stem cell; MPP, multipotent progenitor; CLP, common lymphoid progenitor; CTP, circulating T lineage-committed progenitor; DN, double negative; ETP, early T lineage progenitor; DP, double positive; SP, single positive.