Table 1 Summary of all identified protein modifications

Protein modification	Unique sites identified	Unique modified proteins	Known sites ^a	Selected enriched KEGG pathways/SwissProt-Keywords found ^b
Acetyl (K)	61	44	25 ^c	Glycolysis/gluconeogenesis, citrate cycle (TCA cycle), pyruvate metabolism, ribosome, acetylation, phosphoprotein
Acetyl (protein N terminus)	32	31 ^d	1e	Nucelotide binding, ATP-binding, acetylation, protein transport
Dimethyl (K)	14	14		
Dimethyl (R)	2	2		
Formyl (protein N terminus)	24	24		Phosphoprotein, cytoplasm, pyridoxal phosphate, homodimer, transferase
Methyl (K)	84	64		Acetylation, phosphoprotein, methylated amino acid, periplasm, ribosome, ABC transporters RNA degradation
Methyl (R)	67	55		Acetylation, protein biosynthesis, cytoplasm, homodimer, phosphoprotein, citrate cycle (TCA cycle), ribosome
Phospho (S/T)	24	21	8f	Metal binding, phosphoprotein, magnesium, manganese
Succinyl (K)	17	15	3g	DNA binding, periplasm, heterodimer
Trimethyl (K)	14	13		Protein biosynthesis, acetylation
Trimethyl (R)	16	16		Protein biosynthesis

⁸Known sites from recent large-scale studies. ^bBenjamini probability <0.05. ^cRef. 14. ^dTwo acetlyated N termini (±methionine) were identified for protein sufA. ^cRef. 51. ^fRef. 11. ^gRef. 15.

- 11. Macek, B. *et al.* Phosphoproteome analysis of *E. coli* reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. *Mol. Cell. Proteomics* **7**, 299–307 (2008).
- 14. Weinert, B.T. *et al.* Acetyl-phosphate is a critical determinant of lysine acetylation in *E. coli. Mol. Cell* **51**, 265–272 (2013).
- 15. Colak, G. *et al.* Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in *Escherichia coli. Mol. Cell. Proteomics* **12**, 3509–3520 (2013).
- 51. Smith, V.F., Schwartz, B.L., Randall, L.L. & Smith, R.D. Electrospray mass spectrometric investigation of the chaperone SecB. *Protein Sci.* **5**, 488–494 (1996).