Table 1 Stoichiometries of photons, electrons, protons and ATP in photosynthetic reactions at maximum efficiency, excluding photorespiration and CCMs considered in Table 1 | Process | Value | |--|-------| | Photon energy reaching reaction centre per photon absorbed by antenna pigments | 1 | | Electron transferred through PSI per photon reaching PSI reaction centre | 1 | | Electron transferred through PSII per photon reaching PSII reaction centre | 0.8 | | Absorbed photons needed to transfer four electrons from H ₂ O to 2NADP ⁺ | 9 | | Protons transferred from stroma/cytosol to
thylakoid lumen per electron transferred from
H ₂ O to CO ₂ | 3 | | Absorbed photons needed to transfer 12 protons from stroma/cytosol to thylakoid lumen in electron transferred from H ₂ O to CO ₂ | 9 | | Protons transferred from thylakoid lumen to
stroma/cytosol per ADP phosphorylated
(observed value; 4.67 needed from structural
biology of CF _O CF ₁ ATP synthase with 14 c
subunits per three ADP binding sites) | 4 | | ADP phosphorylated per 12 protons transferred
from thylakoid lumen to stroma/cytosol per
nine photons in non-cyclic electron flow | 3 | | ATP needed per nine photons in assimilating one CO ₂ by the Calvin-Benson cycle at CO ₂ saturation | 2 | | NADPH needed per nine photons in assimilating one CO ₂ by the Calvin-Benson cycle at CO ₂ saturation | 2 | | Protons moved per electron cycled round cyclic electron flow in PSI using one photon | 4 | | ADP phosphorylated per electron cycled round cyclic electron flow in PSI using one photon | 1 |