Table II. Speed and scale of some biological processes. Processes are ordered according to increasing frame rates (f) that are required to image them at a resolution $\Delta x'$. We calculated f using a simplified version of Eq. (2), $f = v/\Delta x'$ where $\Delta x'$ was taken to be 1/10th of the imaged structure size. Note how slow processes can require high framerates since f also depends on the required imaging resolution. For example, the motion of broken DNA ends is slow (1 nm/s, the slowest process in the table) but it ranks fourth according to required frame rate.

# Fig. 2	Name	Required frame rate f	Required resolution $\Delta x'$ (μm)	Size of structure (µm)	Velocity ν (μm/s)	References
1	Somite formation in chicken	6 fph	10	100	1.8×10^{-2}	(Palmeirim <i>et al.</i> , 1997), (Kulesa and Fraser, 2002)
2	Mesodermal cell motion during chicken gastrulation	1 fpm	1	10	1.7×10^{-2}	(Zamir et al., 2006)
3	Neural crest cell migration in chicken	2.4 fpm	1	10	40×10^{-3}	(Kulesa and Fraser, 2000)
4	DNA broken ends in mammalian cells	24 fpm	2.5×10^{-3}	25×10^{-3}	10^{-3}	(Soutoglou et al., 2007)
5	Morphogen diffusion (drosophila Decapentaplegic)	72 fpm	2.5×10^{-3}	25×10^{-3}	3×10^{-3}	(Kicheva et al., 2007)
6	Ribosome translating mRNA (<i>E. coli</i>)	10 fps	4×10^{-3}	40×10^{-3}	4×10^{-2}	(Berg <i>et al.</i> , 2001), (Alberts <i>et al.</i> , 2002)
7	DNA Polymerase T7 Polymerizing plasmidic DNA	15 fps	2×10^{-3}	20×10^{-3}	30×10^{-3}	(Wuite et al., 2000)
8	Protein folding	20 fps	10^{-3}	10×10^{-3}	2×10^{-2}	(Cecconi et al., 2005)
9	Telomere displacement in yeast	20 fps	2.5×10^{-3}	25×10^{-3}	50×10^{-3}	(Gasser, 2002)
10	Flagelated cell	100 fps	0.1	1	10	(Bray, 1992)
11	Microtubule polymerization of cytoplasmic extracts from xenopus eggs	167 fps	3×10^{-3}	30×10^{-3}	0.5	(Parsons and Salmon, 1997)
12	Kinesin I on a microtubule pulling a bead	180 fps	5×10^{-3}	50×10^{-3}	0.9	(Nishiyama et al., 2002)
13	Calcium waves during heart development	150 fps	5	50	10^{3}	(Tallini <i>et al.</i> , 2006)
14	Embryonic zebrafish beating heart	200 fps	5	50	10^{3}	(Forouhar et al., 2006), this report
15	Red blood cells in the developing cardio-vascular system	10^3 fps	1	10	10^{3}	(Jones et al., 2004)

Alberts, B, Johnson, A, Lewis, J, Raff, M, Roberts, K, and Walter, P (2002). "Molecular biology of the cell." Fourth ed., Garland Science, NewYork, pp. 351–352.

Berg, JM, Tymoczko, JL, and Stryer, L (2001). "Biochemistry." Fifth ed., Freeman, NewYork.

Bray, D (1992). "Cell movements." Garland, NewYork.

Cecconi, C, Shank, EA, Bustamante, C, and Marqusee, S (2005). "Direct observation of the three-state folding of a single protein molecule." *Science* **309**, 2057–2060.

Forouhar, AS. Et al., (2006). "The embryonic vertebrate heart tube is a dynamic suction pump." *Science* **312**, 751–753.

Gasser, SM (2002). "Visualizing chromatin dynamics in interphase nuclei." *Science* **296**, 1412–1416.

Jones, EAV, Baron, MH, Fraser, SE, and Dickinson, ME (2004). "Measuring hemodynamic changes during mammalian development." *Am. J. Physiol. Heart Circ. Physiol.* **287**, H1561–H1569

Kicheva, A. et al., (2007). "Kinetics of morphogen gradient formation." *Science* **315**, 521–525.

Kulesa, PM, and Fraser, SE (2000). "In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches." Development 127, 1161–1172.

Kulesa, PM, and Fraser, SE (2002). "Cell dynamics during somite boundary formation revealed by time-lapse analysis." *Science* **298**, 991–995.

Nishiyama, M, Higuchi, H, and Yanagida, T (2002). "Chemomechanical coupling of the forward and backward steps of single kinesin molecules." *Nat. Cell Biol.* **4**, 790–797.

Palmeirim, I, Henrique, D, Ish-Horowicz, D, and Pourquié, O (1997). "Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis." *Cell* **91**, 639–648.

Parsons, SF, and Salmon, ED (1997). "Microtubule assembly in clarified xenopus egg extracts." *Cell Motil. Cytoskeleton* **36**, 1–11.

Soutoglou, E. et al., (2007). "Positional stability of single double-strand breaks in mammalian cells." *Nat. Cell Biol.* **9**, 675–682.

Tallini, N. et al., (2006). "Imaging cellular signals in the heart in vivo: cardiac expression of the high signal Ca2+ indicator GCaMP2." *Proc. Natl. Acad. Sci. U.S.A.* **103**, 4753–4758.

Wuite, GJ, Smith, SB, Young, M, Keller, D, and Bustamante, C (2000). "Single-molecule studies of the effect of template tension on T7 DNA polymerase activity." *Nature* **404**, 103–106.

Zamir, EA, Czirok, A, Cui, C, Little, CD, and Rongish, BJ (2006). "Mesodermal cell displacements during avian gastrulation are due to both individual cell-autonomous and convective tissue movements." *Proc. Natl. Acad. Sci. U.S.A.* **103**, 19806–19811.