TABLE 5.2. Some Properties of Carboxylases

Enzyme	Ѕоитсе	CO_2 or HCO_3^- as substrate	K _{1/2} in terms of free CO ₂ at specified pH/mmol m ⁻³	$\mathbf{M}_{\mathbf{r}}$	Specific reaction rate under optimal conditions/mol C fixed (mol enzyme) ⁻¹ s ⁻¹	Increment of C fixed (µmol C (g enzyme) ⁻¹ s ⁻¹) per 1 mmol m ⁻³ increment of CO ₂ at rate-limiting [CO ₂]	References
Ribulose bis- phosphate	Anabaena variabilis	CO ₂	280 (pH 8)	550,000	41	0.13	Badger [1980]
carboxylase/ oxygenase ^a	Synechococcus sp.	CO_2	240 (pH 8.3)	550,000	27	0.10	Andrews and Abel [1981] Andrews et al. [1981]
(E.C.4.1.1.39)	Beta vulgaris	CO_2	11 (pH 8.2)	550,000	6.6 (20) ^b	0.60 (1.82) ^b	Bird et al. [1982] cf. Hall et al. [1981]
	Chlorophycean microphytes	CO ₂	60 (pH 8.2)	550,000	15	0.23	Lord and Brown [1975] Jordan and Ogren [1981, 1983]
Phosphoenolpyruvate carboxylase	Zea mays	HCO ₃	2 (pH 8.0)	400,000	167 (233) ^c	104 (146)°	O'Leary [1982]
(E.C.4,1.1.31)	Acetobacter aceti	HCO ₃	178 (pH 7.5)	380,000	101	0.74	Schwitzguebel and Ettlinger [1979]
Phosphoenolpyruvate carboxykinase (PP _i ; E.C. 4.1.1.38)	Propionobacter shermanii; Entamoeba histolytica	CO_2	961 (pH 6.8)	430,00	172 ^d	0.21 ^d	Wood et al. [1977]
Phosphoenolpyruvate carboxykinase	Sus livere mitochondria	CO_2	950 (pH 7.5)	73,000	11 ^d	0.08^{d}	Chang and Lane [1966], Chang et al. [1966]
(GTP enzyme from animals	Panicum ^e maxi- mum leaves	CO ₂	1700 (pH 7.2)	?	?	0.03^{d}	Ray and Black [1976]

E.C.4.1.1.32; ATP enzyme from plants E.C.4.1.1.49) Pyruvate carboxylase (E.C.6.4.1.1)	Phaeodactylum tricornutum	(HCO ₃ ⁻ ?)	590 (pH 7.6)	62,000	0.04 ^g	$0.006^{\rm g}$	Holdsworth and Bruck [1978]
	Gallus liver	HCO_3^-	76	655,000	382	3.83	Scruton and Utter [1965]
	Rattus liver	HCO ₃	(pH 7.4) 49	500,000	208	4.25	McClure et al. [1971]
Propionyl CoA car- boxylase	Suus heart	HCO ₃	(pH 8.0) 49 (pH 8.0)	700,000	252	3.67	Kaziro et al. [1961]
(E.C.6.4.1.3) Malic enzyme (NADP ⁺) (E.C.1.1.140)	Rattus skeletal	CO_2	268	264,000	88 ^d	0.62 ^d	Swierczynski [1980]
	muscle Solanum tuberosum	CO_2	(pH 7.2) 129 (pH 7.0) 230	?	?	2.45 ^d 1.38 ^d	Davies and Patil [1974]
Acetyl CoA carboxylase (E.C.6.4.1.2)	Ricinus commu- nis	HCO ₃	(pH 7.6) 67 (pH 8.0)	528,000	18	0.25	Finlayson and Dennis [1983]
Malic enzyme (NAD ⁺) (E.C.1.1.1.38)	endosperm Crassula argen- tea leaves	CO_2	13480 (pH 6.5)	968,000	4.2	0.000155 ^d	Wedding and Black [1983]

^a All RUBISCO data refer to the properties of the carboxylase activity in the absence of oxygen inhibition. Comments on the procedures necessary to obtain correct values of K_{1/2} and CO₂-saturated specific reaction rates for RUBISCO may be found in Bird et al. [1982].

bValues in parentheses are extrapolated specific reaction rates based on maximal activity of all catalytic sites [Hall et al., 1981].

cValues in parentheses are highest values quoted by O'Leary [1982]; other specific reaction rate values are mean maximum values.

dReversible enzyme; rates quoted refer to initial rates, when concentration of product, and hence the rate of the reverse reaction, are negligible.

^eEnzyme from animal tissue using GDP as cosubstrate for carboxylation.

^fEnzyme from plant tissue using ADP as cosubstrate for carboxylation.

^gAuthors admit to substantial loss of activity of enzyme during purification.