TABLE 5.2. Some Properties of Carboxylases | Enzyme | Ѕоитсе | CO_2 or HCO_3^- as substrate | K _{1/2} in terms
of free CO ₂
at specified
pH/mmol
m ⁻³ | $\mathbf{M}_{\mathbf{r}}$ | Specific reaction rate under optimal conditions/mol C fixed (mol enzyme) ⁻¹ s ⁻¹ | Increment of C fixed (µmol C (g enzyme) ⁻¹ s ⁻¹) per 1 mmol m ⁻³ increment of CO ₂ at rate-limiting [CO ₂] | References | |---|--|----------------------------------|--|---------------------------|--|---|---| | Ribulose bis-
phosphate | Anabaena
variabilis | CO ₂ | 280
(pH 8) | 550,000 | 41 | 0.13 | Badger [1980] | | carboxylase/
oxygenase ^a | Synechococcus sp. | CO_2 | 240
(pH 8.3) | 550,000 | 27 | 0.10 | Andrews and Abel
[1981]
Andrews et al. [1981] | | (E.C.4.1.1.39) | Beta vulgaris | CO_2 | 11
(pH 8.2) | 550,000 | 6.6 (20) ^b | 0.60 (1.82) ^b | Bird et al. [1982]
cf. Hall et al. [1981] | | | Chlorophycean
microphytes | CO ₂ | 60
(pH 8.2) | 550,000 | 15 | 0.23 | Lord and Brown [1975]
Jordan and Ogren [1981,
1983] | | Phosphoenolpyruvate
carboxylase | Zea mays | HCO ₃ | 2
(pH 8.0) | 400,000 | 167 (233) ^c | 104 (146)° | O'Leary [1982] | | (E.C.4,1.1.31) | Acetobacter
aceti | HCO ₃ | 178
(pH 7.5) | 380,000 | 101 | 0.74 | Schwitzguebel and
Ettlinger [1979] | | Phosphoenolpyruvate
carboxykinase (PP _i ;
E.C. 4.1.1.38) | Propionobacter
shermanii;
Entamoeba
histolytica | CO_2 | 961
(pH 6.8) | 430,00 | 172 ^d | 0.21 ^d | Wood et al. [1977] | | Phosphoenolpyruvate carboxykinase | Sus livere mitochondria | CO_2 | 950
(pH 7.5) | 73,000 | 11 ^d | 0.08^{d} | Chang and Lane [1966],
Chang et al. [1966] | | (GTP enzyme from animals | Panicum ^e maxi-
mum leaves | CO ₂ | 1700
(pH 7.2) | ? | ? | 0.03^{d} | Ray and Black [1976] | | E.C.4.1.1.32;
ATP enzyme from
plants
E.C.4.1.1.49)
Pyruvate carboxylase
(E.C.6.4.1.1) | Phaeodactylum
tricornutum | (HCO ₃ ⁻ ?) | 590
(pH 7.6) | 62,000 | 0.04 ^g | $0.006^{\rm g}$ | Holdsworth and Bruck [1978] | |--|--|-----------------------------------|------------------------------------|---------|-------------------|--|--------------------------------| | | Gallus liver | HCO_3^- | 76 | 655,000 | 382 | 3.83 | Scruton and Utter [1965] | | | Rattus liver | HCO ₃ | (pH 7.4)
49 | 500,000 | 208 | 4.25 | McClure et al. [1971] | | Propionyl CoA car-
boxylase | Suus heart | HCO ₃ | (pH 8.0)
49
(pH 8.0) | 700,000 | 252 | 3.67 | Kaziro et al. [1961] | | (E.C.6.4.1.3) Malic enzyme (NADP ⁺) (E.C.1.1.140) | Rattus skeletal | CO_2 | 268 | 264,000 | 88 ^d | 0.62 ^d | Swierczynski [1980] | | | muscle
Solanum
tuberosum | CO_2 | (pH 7.2)
129
(pH 7.0)
230 | ? | ? | 2.45 ^d
1.38 ^d | Davies and Patil [1974] | | Acetyl CoA carboxylase (E.C.6.4.1.2) | Ricinus commu-
nis | HCO ₃ | (pH 7.6)
67
(pH 8.0) | 528,000 | 18 | 0.25 | Finlayson and Dennis
[1983] | | Malic enzyme (NAD ⁺) (E.C.1.1.1.38) | endosperm
Crassula argen-
tea leaves | CO_2 | 13480
(pH 6.5) | 968,000 | 4.2 | 0.000155 ^d | Wedding and Black [1983] | ^a All RUBISCO data refer to the properties of the carboxylase activity in the absence of oxygen inhibition. Comments on the procedures necessary to obtain correct values of K_{1/2} and CO₂-saturated specific reaction rates for RUBISCO may be found in Bird et al. [1982]. bValues in parentheses are extrapolated specific reaction rates based on maximal activity of all catalytic sites [Hall et al., 1981]. cValues in parentheses are highest values quoted by O'Leary [1982]; other specific reaction rate values are mean maximum values. dReversible enzyme; rates quoted refer to initial rates, when concentration of product, and hence the rate of the reverse reaction, are negligible. ^eEnzyme from animal tissue using GDP as cosubstrate for carboxylation. ^fEnzyme from plant tissue using ADP as cosubstrate for carboxylation. ^gAuthors admit to substantial loss of activity of enzyme during purification.