Some basic characteristics of bacterial and eukaryotic cells related to macromolecular crowding and intrinsic disorder										
Type of cell	Cellular volume (μm³)	Water content (%)	Percentage of total dry weight			Avg. number of proteins in proteome ^c	Number of proteins per cell ^d	Intrinsic disorder characteristics ^c		
			Proteins	RNA/DNA	Carbohydrates	iii protosilio	por con	Percent of disordered residues	Percent of proteins with IDPR > 30	Percent of proteins with extended disorde
Bacterial ^a	~1.3	70	55	20.5/3.1	8.4 ^b	~3000	\sim 4 \times 10 ⁶	12.0-34.6	11.5–53.7	3.7-29.2
Eukaryotic (single cellular) ^e	~50	65–69 [56]	45	6.3/0.4	40 ^f	~6250	~1.5 × 10 ⁸	27.4–47.1	59.9-68.4	19.2–43.8
Eukaryotic (multicellular) ⁹	~2000	84.2 ± 0.5 [57]	70	1.4/5.9	5.3	~18,500	\sim 6 \times 10 9	35.1–36.1	37.6–61.4	28.3–42.0

30:137-149.

- 10. Xue B, Dunker AK, Uversky VN: Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 2012,
- 56. Alcázar B, Rocha-Leão MHM, Dweck J: Yeast intracellular water determination by thermogravimetry. Journal of Thermal Analysis and Calorimetry 2000, 59:643-648.
- 57. Yamaguchi T, Muraiso C, Furuno-Fukushi I, Tsuboi A: Water content in cultured mammalian cells for dosimetry of betarays from tritiated water. J Radiat Res 1990, 31:333-339.
- 58. Kirchman DL: Processes in Microbial Ecology. Oxford, New York. USA: Oxford University Press; 2012.
- 59. Milo R: What is the total number of protein molecules per cell
- volume?. A call to rethink some published values. Bioessays 2013. **35**:1050-1055.

This article evaluates the expected total number of proteins per unit of cell volume in bacteria, yeast, and mammalian cells.

60. Martens DE: Metabolic flux analysis in mammalian cells. In Systems Biology. Edited by Al-Rubeai M, Fussenegger M. Springer; 2007.

For a bacterial cell, carbohydrates include lipopolysaccharides, peptidoglycans and glycogen.

on the basis of data reported in [10].

Presented numbers are based on a back of the envelope calculation of the number of proteins per cell volume reported in [59*], where it was assumed that irrespectively of its origin, a living cell contains 3×10^6 proteins per 1 μ m³.
^e Data are given for yeast cells growing with a generation time of 7 hours (from [58]).

[†] For an yeast cell, carbohydrates include glycogen and other polysaccharides ⁹ Data are given for mammalian cells based on data reported in [60].