Table 1. Reduction potentials and free energies of relevant compounds and proteins

Reduction pair	E _{env} * (volts) ^a	ΔG (kJ/mol) ^b	Refs
Terminal electron acceptors			
Fe ³⁺ /Fe ²⁺ (pH 2)	+0.77	-74.2	[74]
Fe(III)-citrate/Fe(II)-citrate	+0.385	-37.1	[74]
Fe(III)-NTA/Fe(II)-NTA	+0.372	-35.9	[74]
Ferrihydrite _{solid} /Fe ²⁺	+0.1 to -0.1	-9.6 to 9.6	[74]
α-FeOOH _{solid} /Fe ²⁺	-0.274	26.4	[74]
α-Fe ₂ O _{3solid} /Fe ²⁺	-0.287	55.4	[74]
Fe ₃ O _{4 solid} /Fe ²⁺	-0.314	60.6	[74]
Fumarate/succinate	+0.033	-6.4	[75]
Electron donors relevant to Figures 1-4			
CO ₂ /acetate	-0.29	223.8	[75]
NAD*/NADH	-0.32	61.7	[75]
Electron carriers relevant to Figure 1			
Cyc2 (pH 4.8)	+0.56	-54	[76]
Rusticyanin (pH 3.2)	+0.680	-65.6	[77]
Cyc1 (pH 3)	+0.385; +0.48	-37.1; -46.3	[78]
CycA1 (pH 4)	+0.51; +0.43	-49.2; -41.5	[72]
Components of photosynthetic electron	transport chains relevant to Figure 2		
P ₈₇₀	+0.45	-43.4	[16]
P ₈₇₀ *	-1.1	106.1	[16]
Bph	-0.6	57.9	[16]
UQ _A	-0.2	38.6	[16]
UQ _B	+0.08	-15.4	[16]
Cytochrome bc ₁ (b)	+0.05 and -0.09	-4.8 / 8.7	[79]
Cytochrome bc ₁ (c ₁)	+0.285	-27.5	[80]
Cytochrome bc ₁ (Rieske)	+0.28	-27	[81]
Cytochrome c ₂	+0.365	-35.2	[44]
Membrane components of ET chains in	Figures 1-4		
Menaquinones (ox/red)	-0.067 to -0.11	12.9 to 21.2	[82,83
Ubiquinone(ox/red)	+0.11	-21.2	[75]
Shewanella cytochromes relevant to Fig	gure 3		
CymA (pH 6)	-0.354 to -0.075	7.2 to 34.1	[47]
STC (pH 6)	-0.285 to -0.035	3.4 to 27.5	[47]
MtrA (pH 6)	-0.250 to +0.05	-4.8 to 24.1	[47]
OmcA (pH 6)	-0.325 to −0.05	4.8 to 31.4	[47]
MtrC (pH 6)	-0.275 to -0.0005	0 to 26.5	[47]
Geobacter cytochromes relevant to Figu	ure 4		
PpcA	-0.169	16.3	[84]
OmcB	-0.19	18.3	[85]
OmcS	-0.212	20.4	[52]
Endogenous and exogenous electron sh	nuttles		
Riboflavin	-0.208	40.1	[86]
Monoflavin nucleotide	-0.19	36.7	[75]
AQDS	-0.184	35.5	[87]
Humic substances	-0.2 to +0.3	-77 to 19	[87]
F * in disease and an arrantally and arrantally			

 $^{^{}a}E_{anv}^{}$ * indicates environmentally relevant midpoint potentials: pH 7 except where noted, standard concentrations except for solid Fe minerals, for which Fe $^{2+}$ is 100 μ M.

 $^{^{}b}\Delta G$ calculations assume standard conditions and pH 7, except in the case of iron minerals where [Fe²⁺] is assumed to be 100 μ M.