Table 4. Reduction Potential and Biological Status of Cells

Cell line	Treatment ^a	E _{hc} /mV for GSSG/2GSH (pH)				
		Proliferating	Confluent	Differentiating	Apoptotic	Ref.
HL-60	1 μM staurosporine	-239 ± 6^{b}			-167 ± 9^{b}	[102]
HL-60	Overexpressing Bcl-2 + 1 μ M staurosporine	-230 ^b to -205 ^b			no apoptosis at $E \le -205^b$	[102]
Normal fibroblast	Untreated	-222 (7.0) ^c -247 (7.4)	-188 (7.0) ^{c,d} -213 (7.4)			[103]
Fibrosarcoma	Untreated	-213 (7.0) ^c -238 (7.4)	-213 (7.0) ^{c,e} -238 (7.4)			[103]
HT29	5 mM sodium butyrate	-258 (7.39) ^f		-201 (7.40) ^f		[30]
HT29	25 μM benzyl- isothiocyanate	-244 (7.30) ^f		-160 (7.45) ^f		[30]
Murine hybridoma ^g		-235 ^b			-170 ^b	[30,176
CRL-1606 murine hybridoma ^g	Untreated	-232 (7.0) ^c -257 (7.4)				[53]
Jurkat	Untreated	-240 ^b				[177]
WAL-2A human lymphocyte	Untreated	-237 ^b				[177]
WAL-2A human lymphocyte	ρ^0 (no mitDNA)	-233 ^b				[177]

^a Changing cells from proliferation to another biological state.

- [30] Kirlin, W. G.; Cai, J.; Thompson, S. A.; Diaz, D.; Kavanagh, T. J.; Jones, D. P. Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic. Biol. Med. 27:1208-1218; 1999.
- [53] Hwang, C.; Sinskey, A. J.; Lodish, H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496-1502; 1992.
- [102] Cai, J.; Jones, D. P. Superoxide in apoptosis: mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem. 273:
- [103] Hutter, D. E.; Till, B. G.; Greene, J. J. Redox state changes in density-dependent regulation of proliferation. Exp. Cell Res. 232:435-438; 1997.
- [176] Jones, D. P.; Maellaro, E.; Slater, A. F. G.; Orrenius, S. Effects of N-acetyl-L-cysteine on T-cell apoptosis are not mediated by
- increased cellular glutathione. *Immunol. Lett.* 45:205–209; 1995.

 [177] Cai, J. Y.; Wallace, D. C.; Zhivotovsky, B.; Jones, D. P. Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. *Free* Radic. Biol. Med. 29:334-342; 2000.

b The data were adjusted to the measured cellular pH, but the pH was not reported.
c This reported E_{hc} assumed pH = 7.0. The E_{hc} below is adjusted to pH 7.4 with Eqn. 14.

d These cells were contact-inhibited.

^e These cells were not contact-inhibited, thus, they continue to proliferate.

f This pH was determined experimentally.

g These cells are a fusion product of a myeloma and a B lymphocyte.