Table 4. Reduction Potential and Biological Status of Cells | Cell line | Treatment ^a | E _{hc} /mV for GSSG/2GSH (pH) | | | | | |--|--|--|---|--------------------------|--------------------------------|---------| | | | Proliferating | Confluent | Differentiating | Apoptotic | Ref. | | HL-60 | 1 μM
staurosporine | -239 ± 6^{b} | | | -167 ± 9^{b} | [102] | | HL-60 | Overexpressing Bcl-2 + 1 μ M staurosporine | -230 ^b to -205 ^b | | | no apoptosis at $E \le -205^b$ | [102] | | Normal
fibroblast | Untreated | -222 (7.0) ^c
-247 (7.4) | -188 (7.0) ^{c,d}
-213 (7.4) | | | [103] | | Fibrosarcoma | Untreated | -213 (7.0) ^c
-238 (7.4) | -213 (7.0) ^{c,e}
-238 (7.4) | | | [103] | | HT29 | 5 mM sodium
butyrate | -258 (7.39) ^f | | -201 (7.40) ^f | | [30] | | HT29 | 25 μM benzyl-
isothiocyanate | -244 (7.30) ^f | | -160 (7.45) ^f | | [30] | | Murine
hybridoma ^g | | -235 ^b | | | -170 ^b | [30,176 | | CRL-1606
murine
hybridoma ^g | Untreated | -232 (7.0) ^c
-257 (7.4) | | | | [53] | | Jurkat | Untreated | -240 ^b | | | | [177] | | WAL-2A
human
lymphocyte | Untreated | -237 ^b | | | | [177] | | WAL-2A
human
lymphocyte | ρ^0 (no mitDNA) | -233 ^b | | | | [177] | ^a Changing cells from proliferation to another biological state. - [30] Kirlin, W. G.; Cai, J.; Thompson, S. A.; Diaz, D.; Kavanagh, T. J.; Jones, D. P. Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic. Biol. Med. 27:1208-1218; 1999. - [53] Hwang, C.; Sinskey, A. J.; Lodish, H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496-1502; 1992. - [102] Cai, J.; Jones, D. P. Superoxide in apoptosis: mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem. 273: - [103] Hutter, D. E.; Till, B. G.; Greene, J. J. Redox state changes in density-dependent regulation of proliferation. Exp. Cell Res. 232:435-438; 1997. - [176] Jones, D. P.; Maellaro, E.; Slater, A. F. G.; Orrenius, S. Effects of N-acetyl-L-cysteine on T-cell apoptosis are not mediated by - increased cellular glutathione. *Immunol. Lett.* 45:205–209; 1995. [177] Cai, J. Y.; Wallace, D. C.; Zhivotovsky, B.; Jones, D. P. Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. *Free* Radic. Biol. Med. 29:334-342; 2000. b The data were adjusted to the measured cellular pH, but the pH was not reported. c This reported E_{hc} assumed pH = 7.0. The E_{hc} below is adjusted to pH 7.4 with Eqn. 14. d These cells were contact-inhibited. ^e These cells were not contact-inhibited, thus, they continue to proliferate. f This pH was determined experimentally. g These cells are a fusion product of a myeloma and a B lymphocyte.