TABLE 5. Redox potential of electron donors and electron acceptors involved in ETP

Redox compound	E_0' (mV)	Refer- ences
SO ₄ ²⁻ /HSO ₃ -	-516	_ b
CO ₂ /formate ^a	-432	_ b
H+/H ₂	-414	_ c
$S_2O_3^{2^-}/HS^- + HSO_3^-$	-402	_ b
Flavodoxin ox/red (E'_{01})	-371^{d}	397
Ferredoxin ox/red (E'_{01})	-398 °	157
NAD/NADH	-320	91
Cytochrome c_3 ox/red	-290	728
CO ₂ /acetate	-290	_ b
Sº/HS-	-270	_ b
CO ₂ /CH ₄	-244	_ b
FAD/FADH ₂	-220	f
Acetaldehyde/ethanol	-197	_ 6
Pyruvate ⁻ /lactate ⁻	-190	_ b
FMN/FMNH ₂	-190	
Dihydroxyacetone phos-	-190	94
phate/glycerol-phosphate		
HSO ₃ -/S ₃ O ₆ 2-	-173	_ 6
Oxaloacetate2-/malate2-	-172	_ b
Flavodoxin ox/red (E'_{02})	-115^{d}	397
HSO ₃ ⁻ /HS ⁻	-116	_ <i>b</i>
Menaquinone ox/red (MK)	-74	569, 685
$APS/AMP + HSO_3^-$	-60	594
Rubredoxin ox/red	-57	155
Acrylyl CoA/propionyl CoA	-15	232
Glycine/acetate + NH ₄ +	-10	b
2-Demethylvitamin K ₂ ox/red	+25	569, 250a
$S_4O_6^{2-}/S_2O_3^{2-}$	+24	_ b
Fumarate/succinate	+33	_ b
Ubiquinone ox/red	+113	569
$S_3O_6^{2-}/S_2O_3^{2-} + HSO_3^{-}$	+225	_ <i>b</i>
NO ₂ -/NO	+350	_ b
NO ₃ -/NO ₂ -	+433	_ b
Fe^{3+}/Fe^{2+}	+772	_ b
O_2/H_2O	+818	_ b
NO/N ₂ O	+1175	- b
N_2O/N_2	+1355	- b

 $[^]a$ CO₂ rather than HCO₃⁻ has been shown to be the active species of "CO₂" utilized or formed by formate dehydrogenases (336, 645, 646b).

^b Calculated from $\Delta G^{0'}$ for redox compound reduction with H₂ ($\Delta G^{0'} = -n \cdot F \cdot \Delta E_0'$, $\Delta E_0' = E_0'$ (redox compound $-E_0'$ (H⁺/H₂); n = number of electrons transferred in the reaction; F [Faraday constant] = 23060.9 cal/V equivalent) (110). The ΔG^0 values were calculated from the ΔGf^0 values given in Table 15 (CO₂, CH₄, H₂, N₂, NO, and N₂O in the gaseous state, all other compounds in aqueous solution).

^c At 25°C.

^d Peptostreptococcus elsdenii; for E_0 ' of clostridial flavodoxins see (394).

^e Clostridium pasteurianum ($E'_{02} = -367 \text{ mV}$).

^{&#}x27; The redox potential of flavin enzymes may differ by as much as 200 mV from the values of the free coenzymes.