TABLE 5. Redox potential of electron donors and electron acceptors involved in ETP | Redox compound | E_0' (mV) | Refer-
ences | |---|-------------|-----------------| | SO ₄ ²⁻ /HSO ₃ - | -516 | _ b | | CO ₂ /formate ^a | -432 | _ b | | H+/H ₂ | -414 | _ c | | $S_2O_3^{2^-}/HS^- + HSO_3^-$ | -402 | _ b | | Flavodoxin ox/red (E'_{01}) | -371^{d} | 397 | | Ferredoxin ox/red (E'_{01}) | -398 ° | 157 | | NAD/NADH | -320 | 91 | | Cytochrome c_3 ox/red | -290 | 728 | | CO ₂ /acetate | -290 | _ b | | Sº/HS- | -270 | _ b | | CO ₂ /CH ₄ | -244 | _ b | | FAD/FADH ₂ | -220 | f | | Acetaldehyde/ethanol | -197 | _ 6 | | Pyruvate ⁻ /lactate ⁻ | -190 | _ b | | FMN/FMNH ₂ | -190 | | | Dihydroxyacetone phos- | -190 | 94 | | phate/glycerol-phosphate | | | | HSO ₃ -/S ₃ O ₆ 2- | -173 | _ 6 | | Oxaloacetate2-/malate2- | -172 | _ b | | Flavodoxin ox/red (E'_{02}) | -115^{d} | 397 | | HSO ₃ ⁻ /HS ⁻ | -116 | _ <i>b</i> | | Menaquinone ox/red (MK) | -74 | 569, 685 | | $APS/AMP + HSO_3^-$ | -60 | 594 | | Rubredoxin ox/red | -57 | 155 | | Acrylyl CoA/propionyl CoA | -15 | 232 | | Glycine/acetate + NH ₄ + | -10 | b | | 2-Demethylvitamin K ₂ ox/red | +25 | 569, 250a | | $S_4O_6^{2-}/S_2O_3^{2-}$ | +24 | _ b | | Fumarate/succinate | +33 | _ b | | Ubiquinone ox/red | +113 | 569 | | $S_3O_6^{2-}/S_2O_3^{2-} + HSO_3^{-}$ | +225 | _ <i>b</i> | | NO ₂ -/NO | +350 | _ b | | NO ₃ -/NO ₂ - | +433 | _ b | | Fe^{3+}/Fe^{2+} | +772 | _ b | | O_2/H_2O | +818 | _ b | | NO/N ₂ O | +1175 | - b | | N_2O/N_2 | +1355 | - b | $[^]a$ CO₂ rather than HCO₃⁻ has been shown to be the active species of "CO₂" utilized or formed by formate dehydrogenases (336, 645, 646b). ^b Calculated from $\Delta G^{0'}$ for redox compound reduction with H₂ ($\Delta G^{0'} = -n \cdot F \cdot \Delta E_0'$, $\Delta E_0' = E_0'$ (redox compound $-E_0'$ (H⁺/H₂); n = number of electrons transferred in the reaction; F [Faraday constant] = 23060.9 cal/V equivalent) (110). The ΔG^0 values were calculated from the ΔGf^0 values given in Table 15 (CO₂, CH₄, H₂, N₂, NO, and N₂O in the gaseous state, all other compounds in aqueous solution). ^c At 25°C. ^d Peptostreptococcus elsdenii; for E_0 ' of clostridial flavodoxins see (394). ^e Clostridium pasteurianum ($E'_{02} = -367 \text{ mV}$). ^{&#}x27; The redox potential of flavin enzymes may differ by as much as 200 mV from the values of the free coenzymes.