$\begin{table 1.5cm} \textbf{Table 1.} Reaction and standard changes in free energies a for methanogenesis b \end{table}$ | Reaction | ΔG°′
(KJ/mol CH ₄) | |--|-----------------------------------| | 4 H ₂ +CO ₂ →CH ₄ +2H ₂ O | -135.6 | | 4 Formate→CH ₄ +3CO ₂ +2H ₂ O | -130.1 | | 2 Ethanol+CO ₂ →CH ₄ +2 Acetate | -116.3 | | Methanol+H ₂ →CH ₄ +H ₂ O | -112.5 | | 4 Methanol→3CH ₄ +CO ₂ +2H ₂ O | -104.9 | | 4 Methylamine+2H ₂ O→3CH ₄ +CO ₂ +4NH ₄ ⁺ | -75.0 | | 4 Trimethylamine+6H ₂ O→9CH ₄ +3CO ₂ +4NH ₄ ⁺ | -74.3 | | 2 Dimethylsulfide+2H ₂ O→3CH ₄ +CO ₂ +H ₂ S | -73.8 | | 2 Dimethylamine+2H ₂ O→3CH ₄ +CO ₂ +2NH ₄ ⁺ | -73.2 | | 4 2-Propanol+CO ₂ →CH ₄ +4 Acetone+2H ₂ O | -36.5 | | Acetate→CH ₄ +CO ₂ | -31.0 | a: calculated from the free energy of formation of the most abundant ionic species at neutral pH. Thus, CO_2 is $HCO_3^- + H^+$ and formate is $HCOO^- + H^+$. b: from Whitman et al. [7].