$\begin{table 1.5cm} \textbf{Table 1.} Reaction and standard changes in free energies a for methanogenesis b \end{table}$

Reaction	ΔG°′ (KJ/mol CH ₄)
4 H ₂ +CO ₂ →CH ₄ +2H ₂ O	-135.6
4 Formate→CH ₄ +3CO ₂ +2H ₂ O	-130.1
2 Ethanol+CO ₂ →CH ₄ +2 Acetate	-116.3
Methanol+H ₂ →CH ₄ +H ₂ O	-112.5
4 Methanol→3CH ₄ +CO ₂ +2H ₂ O	-104.9
4 Methylamine+2H ₂ O→3CH ₄ +CO ₂ +4NH ₄ ⁺	-75.0
4 Trimethylamine+6H ₂ O→9CH ₄ +3CO ₂ +4NH ₄ ⁺	-74.3
2 Dimethylsulfide+2H ₂ O→3CH ₄ +CO ₂ +H ₂ S	-73.8
2 Dimethylamine+2H ₂ O→3CH ₄ +CO ₂ +2NH ₄ ⁺	-73.2
4 2-Propanol+CO ₂ →CH ₄ +4 Acetone+2H ₂ O	-36.5
Acetate→CH ₄ +CO ₂	-31.0

a: calculated from the free energy of formation of the most abundant ionic species at neutral pH. Thus, CO_2 is $HCO_3^- + H^+$ and formate is $HCOO^- + H^+$.

b: from Whitman et al. [7].