Table 3 Rates of reductive PP sequences, measured by NADH oxidation, in reactions catalysed by spinach SEP with a variety of sugar phosphates as substrates

Substrate	Concentration (mM)	Rate of NADH oxidation (µmol h ⁻¹ mg ⁻¹ Chl)	
		Spinach ^a	Pea ^b
Ru 1,5-P ₂	2.0	592 ± 79 (9)	546
Rib 5-P	2.0	$743 \pm 92 \ (10)$	453
Rib 5-P	0.2	$366 \pm 39 (10)$	_
Seh 7-P	2.0	$183 \pm 32 (12)$	184
Seh 1,7-P ₂	2.0	$76 \pm 14 \ (10)$	112
Fru 1,6-P ₂	2.0	$10.1 \pm 2.7 (10)$	74.1
Fru 1,6-P ₂	1.0	$18.2 \pm 2.9 (11)$	_
Fru 6-P	2.0	$1.0^{\circ} \pm 0.3 (13)$	77.6
Fru 6-P + DHAP	2.0/0.20	$1.8 \pm 0.4 (10)$	142
Fru 6-P + PGA	2.0/0.20	$2.9 \pm 0.4 (8)$	_
DHAP	2.0	$13.1 \pm 3.1 \ (10)$	53
DHAP	0.20	$5.0 \pm 1.4 (11)$	22.6
Ara 5-P	2.0	1.1 (9) ^d	_
D-g-D-i-oct 1,8-P ₂	2.0	$3.7 \pm 1.7 (5)$	_
D-g-D-a-oct 1,8-P ₂	2.0	$9.3 \pm 1.5 (6)$	_
D-g-D-i-oct 8-P	2.0	$6.3 \pm 2.4 (5)$	_
D-g-D-a-oct 8-P	2.0	$8.2 \pm 3.0 (5)$	_

 $^{^{}a}$ Shows the results of this study. Results are mean values \pm standard deviation. The number of determinations using different batches of SEP are shown in brackets

^b Shows the data of Furbank and Lilley (1981) for peas

 $^{^{\}rm c}$ When preparations were made using sonicated spinach chloroplast suspensions and Fru 6-P as substrate, varying (non-reproducible) rates up to 5 μ mol h^{-1} mg $^{-1}$ Chl were recorded

^d Results were variable with different SEP batches, three of the SEP preparations with Ara 5-P did not support any NADH oxidation